圆周运动(赵智超)

圆周运动的“角度量”描述

可能用到的符号

\omega\alpha\beta
对应代码:

$\omega$、$\alpha$、$\beta$

知识点

  1. 圆周运动可用标量,不需要用矢量

    • 给定一个圆心,只有顺时针转动和逆时针转动之分
    • 可用正负来标记转动方向
  2. 位置:\theta

    • 约定逆时针转为正,且起点是参考轴正向。请思考,\theta=\pi 代表运动到哪里了? 到达对面

    • \theta=-\frac{\pi}{3} , 运动到哪里?参考轴下方60度 处

    • \theta=\frac{4}{3}\pi\theta=-\frac{2}{3}\pi,是不同的位置不?相同

    • \theta(t)=\frac{\pi}{10}t+\frac{\pi}{2}是什么样的运动?从90度出发以每秒18度的速度在圆周上运动

  3. 角速度:\omega

    • 即转速,表征转动的快慢。
    • 比较:
      • \theta(t)=\frac{\pi}{10}t+\frac{\pi}{2}
      • \theta(t)=\frac{\pi}{9}t+\frac{\pi}{2}
    • 角速度 \omega=\frac{d\theta}{dt}
  4. 角加速度:\alpha (or \beta)

    • 表征角速度变化的快慢。

    • 比较:

      • \theta(t)=\frac{\pi}{10}t+\frac{\pi}{2}
      • \theta(t)=\frac{\pi}{9}t^2+\frac{\pi}{2}
    • 角加速度 \alpha=\frac{d\omega}{dt}


    例题:

    • 请用以上工具分析圆周运动:\theta(t)=4t^2+4t-\frac{\pi}{3}​.
      \omega(t)=8t+4
      \alpha=8

    习题:

    • 请写出一个圆周运动,使得它:初始位置在\frac{\pi}{3},初始角速度10(逆时针),角加速度为2​(顺时针)。

      解答:theta(t)=-t^2+10t+\frac{\pi}{3}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容