机器学习基石课程笔记 Week6 VC Bound

本篇中将完成上篇未完成的推论证明,并更新霍夫丁不等式以满足m_H(N)的情形。
To prove the conjecture, we need to generalize a upper bound of all cases with break point k, which is irrelevant to what the actual case is (either the perceptron hypothesis or any other ones) , we call it the bounding function, B(N,k), m_H(N)\leq B(N,k).
Firstly, we have the following equations, B(N,k)=2^k-1, N=k B(N,k)=2^N, N<k B(N,1)=1
Consider a special case B(4,3)=2\alpha+\beta, \alpha的意思是在不考虑x_4的情况下,x_1,x_2,x_3的组合出现两次的次数,\{A,A,A,B\}和\{A,A,A,A\}就是这样的一对。\beta是只出现一次的组合次数。
Hence, \alpha+\beta<B(3,3) as we are not able to shatter three points (break point is 3).
\alpha\leq B(3,2) as we are not able to shatter three points(including x_4 this time).
Inductively, B(N,k)\leq B(N-1,k)+B(N-1,k-1). We need to prove B(N,k)\leq \sum_{i=0}^{k-1}C_N^i
Assume B(N-1,k)\leq \sum_{i=0}^{k-1}C_{N-1}^i and B(N-1,k-1)\leq \sum_{i=0}^{k-2}C_{N-1}^i=\sum_{i=1}^{k-1}C_{N-1}^{i-1}
Then \begin{align} B(N,k)&\leq \sum_{i=0}^{k-1}C_{N-1}^i+\sum_{i=1}^{k-1}C_{N-1}^{i-1}\\ &=C_{N-1}^0+\sum_{i=1}^{k-1}(C_{N-1}^i+C_{N-1}^{i-1})\\ &=C_N^0+\sum_{i=1}^{k-1}C_N^i\\ &=\sum_{i=0}^{k-1}C_N^i \end{align}
Hence, m_H(N)\leq B(N,k)\leq \sum_{i=0}^{k-1}\binom{N}{i}=O(N^{k-1}) is polynomial, the only next step is to replace M in Hoeffding's inequality with m_H, and the new bound is called Vapnik–Chervonenkis bound, VC bound.
P[\exists h\in H, \mid E_{in}(h)-E_{out}(h) \mid >\varepsilon]\leq 4m_H(2N)exp(-\frac{1}{8}\varepsilon^2 N)
有关VC bound的进一步证明可见
https://mostafa-samir.github.io/ml-theory-pt2/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。