本篇中将完成上篇未完成的推论证明,并更新霍夫丁不等式以满足的情形。
To prove the conjecture, we need to generalize a upper bound of all cases with break point , which is irrelevant to what the actual case is (either the perceptron hypothesis or any other ones) , we call it the bounding function,
,
.
Firstly, we have the following equations,
Consider a special case ,
的意思是在不考虑
的情况下,
的组合出现两次的次数,
就是这样的一对。
是只出现一次的组合次数。
Hence, as we are not able to shatter three points (break point is 3).
as we are not able to shatter three points(including
this time).
Inductively, . We need to prove
Assume and
Then
Hence, is polynomial, the only next step is to replace
in Hoeffding's inequality with
, and the new bound is called Vapnik–Chervonenkis bound, VC bound.
有关VC bound的进一步证明可见
https://mostafa-samir.github.io/ml-theory-pt2/
机器学习基石课程笔记 Week6 VC Bound
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。