支持向量机(support vector machine)

SVM是一种二分类模型,他的基本模型是定义在特征空间上的间隔最大的线性分类器。当使用不同的核函数时,可以使得SVM成为一个非线性分类器。支持向量机的学习策略是间隔最大化,可转化为一个求解二次函数凸优化的问题。

支持向量机又可分为线性可分支持向量机(硬间隔最大化,硬间隔支持向量机),线性支持向量机(软间隔最大化,软间隔支持向量机)和非线性支持向量机(核函数)。


线性可分支持向量机

首先,让我们来看看最简单的情况——线性可分支持向量机。

给定线性可分数据集,通过间隔最大化可得到一个分离超平面可将数据集分为两类,分割超平面可表示为:

相应的分类决策函数为:

φ(x)是某个确定的特征空间转换函数,他的作用是将x映射到更高维度的空间。最简单的φ(x)=x。
w为权重向量,b为偏置项。

sign是指示函数。目标值yi∈(-1,1)。

对于任何一个数据集,都有无数个超平面可将数据集分为两类,我们的目标是要寻找最大间隔分离超平面。

寻找最大间隔分离超平面即寻找w,b = argmaxj mini(WiXj+bj),简言之就是最小样本的最大距离。

对于每一个超平面,都能找到离这个超平面距离最小的点(上式中最小的i),这个距离就是间隔,而比较所有的超平面(上式中的j)的的间隔寻找最大的间隔的超平面也即是我们要找的超平面。

要使得所有样本都被正确分类,则需要满足:

当所有样本都被正确分类时,根据解析几何中点到平面的距离公式,每个样本点离超平面的距离为:

其中||w||是权重向量w的L2范数,即:
因此,我们寻找最大间隔超平面的目标函数可转化为:
也即转化为带约束条件的最优化问题:
取倒转化为求二次函数的最优化问题:
凸优化问题

这个优化问题我们很熟悉,可以使用拉格朗日乘子法,如下:
转化为对偶问题:

对里面的极小先求导计算:
然后将上面求导得到的结果带入原拉格朗日函数中:
添加负号将求最大值转化为最小值:
到了这里就可以用SMO算法求的α的值了,将阿尔法分别带入w中可求得w的值

为什么b可以由代入yj表示?因为这是监督学习啊,确定了α不为零的i后,对应的几个样本的数据就确定了,这些都是已知的
而又由w,b的表达式可知他们只依赖于训练数据中对应于αi大于0的样本点(xi, yi),而其他样本对于w,b没有影响。而这些训练数据中对应于αi大于0的样本点称为支持向量。

线性支持向量机与软间隔最大化

线性可分问题的支持向量机学习方法,对线性不可分数据是不适用的,因为这时上述方法中的不等式约束并不能都成立。怎么才能将其扩展到线性不可分问题呢?这就需要修改硬间隔最大化,使其成为软间隔最大化。

当数据线性不可分时,我们可以对每个样本Xi引入一个松弛变量ξi,使得函数间隔加上松弛变量后大于等于1,也即约束条件变为:

目标函数也变为:

这里C称为惩罚因子,一般由应用问题决定,C值大时,对误分类的惩罚增加,C值小时对误分类的惩罚减小,上面加了松弛变量后的目标函数有两层含义:使1/2||w||2尽量小,即间隔尽量大,同时使误分类点的个数尽量小,C是调和二者的系数。

更直白的说,惩罚因子C决定了你有多重视离群点带来的损失,当所有离群点的松弛变量的和一定时,C越大,目标函数的损失也就越大,这意味着你非常不愿意放弃这些离群点。当你把C定为无穷大时,只要有一个离群点,目标函数的值也会变得无穷大,使得我们无法放弃任何一个离群点,这时其实就退化成了硬间隔问题,这也意味着模型容易过拟合,泛化能力差。

于是线性不可分的线性支持向量机的学习问题变成了如下的凸二次规划(converx quadratic programming)问题:

带松弛因子的拉格朗日函数:

将上面求得的三个式子带入拉格朗日函数中:
对求max(α)的式子取负号变为求其极小值,得到最终目标函数:
整理得到对偶问题,最终目标函数

上面的最终目标函数与线性可分支持向量机的求α最终目标函数是一样的,同样的可以使用SMO算法求解得到α的解集:

然后将α带入w中可求得w,b的求法也与上面一致。最后结合工程实际中求法得到线性支持向量机:
线性支持向量机

非线性支持向量机与核函数

对于线性分类数据,线性支持向量机是一种非常有效的方法。但是,有时候分类问题是非线性的,这时可以利用核技巧使用非线性支持向量机。

使用核函数,可以将原始输入空间映射到新的特征空间,从而使得原本线性不可分的样本可能在核空间上可分。

常用的核函数有多项式核函数,高斯核函数以及sigmoid核:

非线性支持向量机的优化求解与线性支持向量机核函数的求解是一致的,我们最开始求线性可分支持向量机用的是φ(x),将φ(x)换成核函数便成了非线性核函数支持向量机的最优化求解了,这都是一致的,因此不再求解。

序列最小最优化算法

序列最小最优化算法(sequential minimal optimization,SMO)是对偶问题的求解方法,每次求解选择两个变量α1,α2,而将其他值作为定值进行求解,具体的以后看了再说吧。

参考:
《统计学习方法》李航
机器学习. 邹博
SVM学习(五):松弛变量与惩罚因子

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容