环形队列是什么
队列是一种常用的数据结构,这种结构保证了数据是按照“先进先出”的原则进行操作的,即最先进去的元素也是最先出来的元素.环形队列是一种特殊的队列结构,保证了元素也是先进先出的,但与一般队列的区别是,他们是环形的,即队列头部的上个元素是队列尾部,通常是容纳元素数固定的一个闭环。
环形队列的工作场景
一般应用于需要高效且频繁进行多线程通信传递数据的场景,例如:linux捕包、发包等等,(linux系统中对PACKET_RX_RING和PACKET_TX_RING的支持实质就是内核实现的一种环形队列)
#include <assert.h>
#include <string.h>
typedef unsigned char u_char;
#define CAN_WRITE 0x00
#define CAN_READ 0x01
#define READING 0x02
#define WRITING 0x03
typedef struct tag
{
u_char tag_value;
}TAG;
class Ring_Queue
{
public:
Ring_Queue(int nmemb,int size):_nmemb(nmemb),_size(size)
,_read_now(0),_write_now(0)
{
if ( nmemb <= 0 || size <=0 )
{
assert(0);
}
_queue_p = NULL;
_queue_p = new u_char[ nmemb * (sizeof(TAG) + size)];
memset(_queue_p,0,nmemb * (sizeof(TAG) + size));
}
~Ring_Queue()
{
if (_queue_p) delete []_queue_p;
}
u_char * SOLO_Read()
{
u_char * g_p = 0;
TAG * tag_p = 0;
u_char *user_data = 0;
g_p = queue_peek_nth(_queue_p,_read_now);
tag_p = (TAG *)g_p;
if (tag_p->tag_value == CAN_READ)
{
user_data = (u_char *)g_p + sizeof(TAG);
tag_p->tag_value = READING;
}
return user_data;
}
void SOLO_Read_Over()
{
u_char * g_p = 0;
TAG * tag_p = 0;
g_p = queue_peek_nth(_queue_p,_read_now);
tag_p = (TAG *)g_p;
if (tag_p->tag_value == READING)
{
tag_p->tag_value = CAN_WRITE;
_read_now = (_read_now + 1)% _nmemb;
}
}
u_char * SOLO_Write()
{
u_char * g_p = 0;
TAG * tag_p = 0;
u_char *user_data = 0;
g_p = queue_peek_nth(_queue_p,_write_now);
tag_p = (TAG *)g_p;
if (tag_p->tag_value == CAN_WRITE)
{
user_data = (u_char *)g_p + sizeof(TAG);
tag_p->tag_value = WRITING;
}
return user_data;
}
void SOLO_Write_Over()
{
u_char * g_p = 0;
TAG * tag_p = 0;
g_p = queue_peek_nth(_queue_p,_write_now);
tag_p = (TAG *)g_p;
if (tag_p->tag_value == WRITING)
{
tag_p->tag_value = CAN_READ;
_write_now = (_write_now + 1)% _nmemb;
}
}
private:
u_char *queue_peek_nth(u_char *queue_p,int pos)
{
u_char *rst = 0;
if (queue_p && pos < _nmemb)
{
rst = queue_p + pos * (sizeof(TAG) + _size);
}
return rst;
}
u_char * _queue_p;
int _nmemb;
int _size;
volatile int _read_now;
volatile int _write_now;
};
#include <stdio.h>
#include "ring_queue.h"
#include <unistd.h>
#include <sys/time.h>
const int LOOP_SIZE = 10000;
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#define THREAD_NUM 1
#define DATA_TYPE int
void *customer(void *arg)
{
Ring_Queue queue = *(Ring_Queue *)arg;
while(1)
{
for(int i = 0;i < LOOP_SIZE; )
{
int *p = 0;
p = (DATA_TYPE *)queue.SOLO_Read();
if (p)
{
assert(i == *p);
// printf("[%d]:%d\n",i,*p);
queue.SOLO_Read_Over();
i++;
}
}
}
}
void *producer(void *arg)
{
Ring_Queue queue = *(Ring_Queue *)arg;
int loop = 0;
struct timeval last_time,now_time;
gettimeofday(&last_time,NULL);
gettimeofday(&now_time,NULL);
while(1)
{
for(int i = 0;i < LOOP_SIZE; )
{
int *p = 0;
p = (DATA_TYPE *)queue.SOLO_Write();
if (p)
{
*p = i;
queue.SOLO_Write_Over();
i++;
}
}
gettimeofday(&now_time,NULL);
if (now_time.tv_sec - last_time.tv_sec >= 5)
{
printf("LOOP_COUNT is %.2f=[ %d[RING_SIZE] * %.2f[RING_COUNT]] per second\n",(LOOP_SIZE*loop)/5.0,LOOP_SIZE,loop/5.0);
last_time = now_time;
loop = 0;
}
loop++;
}
}
int main(int argc,char *argv[])
{
pthread_t tid_customer[THREAD_NUM];
pthread_t tid_producer[THREAD_NUM];
Ring_Queue *queue = new Ring_Queue[THREAD_NUM](LOOP_SIZE,sizeof(DATA_TYPE));
for (int i = 0; i < THREAD_NUM; i++)
{
if (pthread_create(&tid_customer[i],NULL,&customer,(void*)&queue[i]) != 0)
{
fprintf(stderr,"thread create failed\n");
return -1;
}
}
for (int i = 0; i < THREAD_NUM; i++)
{
if (pthread_create(&tid_producer[i],NULL,&producer,(void*)&queue[i]) != 0)
{
fprintf(stderr,"thread create failed\n");
return -1;
}
}
for (int i = 0 ;i < THREAD_NUM; i++)
pthread_join(tid_customer[i],NULL);
for (int i = 0 ;i < THREAD_NUM; i++)
pthread_join(tid_producer[i],NULL);
}