机器学习之特征预处理

这里要讨论特征预处理的相关问题。主要包括特征的归一化和标准化,异常特征样本清洗与样本数据不平衡问题的处理。(原文地址)

1. 特征的标准化和归一化

     由于标准化和归一化这两个词经常混用,所以本文不再区别标准化和归一化,而通过具体的标准化和归一化方法来区别具体的预处理操作。

    z-score标准化:这是最常见的特征预处理方式,基本所有的线性模型在拟合的时候都会做 z-score标准化。具体的方法是求出样本特征x的均值mean和标准差std,然后用(x-mean)/std来代替原特征。这样特征就变成了均值为0,方差为1了。在sklearn中,我们可以用StandardScaler来做z-score标准化。当然,如果我们是用pandas做数据预处理,可以自己在数据框里面减去均值,再除以方差,自己做z-score标准化。    

    max-min标准化:也称为离差标准化,预处理后使特征值映射到[0,1]之间。具体的方法是求出样本特征x的最大值max和最小值min,然后用(x-min)/(max-min)来代替原特征。如果我们希望将数据映射到任意一个区间[a,b],而不是[0,1],那么也很简单。用(x-min)(b-a)/(max-min)+a来代替原特征即可。在sklearn中,我们可以用MinMaxScaler来做max-min标准化。这种方法的问题就是如果测试集或者预测数据里的特征有小于min,或者大于max的数据,会导致max和min发生变化,需要重新计算。所以实际算法中, 除非你对特征的取值区间有需求,否则max-min标准化没有 z-score标准化好用。

L1/L2范数标准化:如果我们只是为了统一量纲,那么通过L2范数整体标准化也是可以的,具体方法是求出每个样本特征向量𝑥⃗x→的L2范数||𝑥⃗||2||x→||2,然后用𝑥⃗/||𝑥⃗||2x→/||x→||2代替原样本特征即可。当然L1范数标准化也是可以的,即用𝑥⃗/||𝑥⃗||1x→/||x→||1代替原样本特征。通常情况下,范数标准化首选L2范数标准化。在sklearn中,我们可以用Normalizer来做L1/L2范数标准化。

    此外,经常我们还会用到中心化,主要是在PCA降维的时候,此时我们求出特征x的平均值mean后,用x-mean代替原特征,也就是特征的均值变成了0, 但是方差并不改变。这个很好理解,因为PCA就是依赖方差来降维的。

    虽然大部分机器学习模型都需要做标准化和归一化,也有不少模型可以不做做标准化和归一化,主要是基于概率分布的模型,比如决策树大家族的CART,随机森林等。当然此时使用标准化也是可以的,大多数情况下对模型的泛化能力也有改进。

2. 异常特征样本清洗

    我们在实际项目中拿到的数据往往有不少异常数据,有时候不筛选出这些异常数据很可能让我们后面的数据分析模型有很大的偏差。那么如果我们没有专业知识,如何筛选出这些异常特征样本呢?常用的方法有两种。

    第一种是聚类,比如我们可以用KMeans聚类将训练样本分成若干个簇,如果某一个簇里的样本数很少,而且簇质心和其他所有的簇都很远,那么这个簇里面的样本极有可能是异常特征样本了。我们可以将其从训练集过滤掉。

    第二种是异常点检测方法,主要是使用iForest或者one class SVM,使用异常点检测的机器学习算法来过滤所有的异常点。

    当然,某些筛选出来的异常样本是否真的是不需要的异常特征样本,最好找懂业务的再确认一下,防止我们将正常的样本过滤掉了。

3.  处理不平衡数据

    这个问题其实不算特征预处理的部分,不过其实它的实质还是训练集中各个类别的样本的特征分布不一致的问题,所以这里我们一起讲。

    我们做分类算法训练时,如果训练集里的各个类别的样本数量不是大约相同的比例,就需要处理样本不平衡问题。也许你会说,不处理会怎么样呢?如果不处理,那么拟合出来的模型对于训练集中少样本的类别泛化能力会很差。举个例子,我们是一个二分类问题,如果训练集里A类别样本占90%,B类别样本占10%。 而测试集里A类别样本占50%, B类别样本占50%, 如果不考虑类别不平衡问题,训练出来的模型对于类别B的预测准确率会很低,甚至低于50%。

    如何解决这个问题呢?一般是两种方法:权重法或者采样法。

    权重法是比较简单的方法,我们可以对训练集里的每个类别加一个权重class weight。如果该类别的样本数多,那么它的权重就低,反之则权重就高。如果更细致点,我们还可以对每个样本加权重sample weight,思路和类别权重也是一样,即样本数多的类别样本权重低,反之样本权重高。sklearn中,绝大多数分类算法都有class weight和 sample weight可以使用。

    如果权重法做了以后发现预测效果还不好,可以考虑采样法。

    采样法常用的也有两种思路,一种是对类别样本数多的样本做子采样, 比如训练集里A类别样本占90%,B类别样本占10%。那么我们可以对A类的样本子采样,直到子采样得到的A类样本数和B类别现有样本一致为止,这样我们就只用子采样得到的A类样本数和B类现有样本一起做训练集拟合模型。第二种思路是对类别样本数少的样本做过采样, 还是上面的例子,我们对B类别的样本做过采样,直到过采样得到的B类别样本数加上B类别原来样本一起和A类样本数一致,最后再去拟合模型。

上述两种常用的采样法很简单,但是都有个问题,就是采样后改变了训练集的分布,可能导致泛化能力差。所以有的算法就通过其他方法来避免这个问题,比如SMOTE算法通过人工合成的方法来生成少类别的样本。方法也很简单,对于某一个缺少样本的类别,它会随机找出几个该类别的样本,再找出最靠近这些样本的若干个该类别样本,组成一个候选合成集合,然后在这个集合中不停的选择距离较近的两个样本,在这两个样本之间,比如中点,构造一个新的该类别样本。举个例子,比如该类别的候选合成集合有两个样本(𝑥1,𝑦),(𝑥2,𝑦)(x1,y),(x2,y),那么SMOTE采样后,可以得到一个新的训练样本(𝑥1+𝑥22,𝑦)(x1+x22,y),通过这种方法,我们可以得到不改变训练集分布的新样本,让训练集中各个类别的样本数趋于平衡。我们可以用imbalance-learn这个Python库中的SMOTEENN类来做SMOTE采样。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容