数据挖掘建模之python进行Logistic回归分析

回归分析是通过建立模型来研究变量之间相互关系的密切程度、结构状态及进行模型预测的一种有效工具。按照研究方法划分,回归分析研究的范围大致如下:




本文简述几个主要的回归模型:

线性回归:

适用于因变量和自变量是线性关系,对自变量和因变量之间的线性关系进行建模,可以用最小二乘法求解模型系数

非线性回归:

适用于因变量和自变量不是线性关系,如果非线性关系可以通过简单的函数变换转化成线性关系,用线性回归的思想求解,如果不能转化,用非线性最小二乘法求解

Logistic回归:

因变量一般有1、0(是、否)两种求值,是广义线性回归模型的特例,利用Logistic函数将因变量的取值范围控制在0和1之间,表示取之为1的概率。

岭回归:

适用于参与建模的自变量之间具有多重共线性,是一种改进最小二乘法估计的方法。

主成分回归:

适用于参与建模的自变量之间具有多重共线性,主成分回归是根据主成分分析的思想提出来的,是对最小二乘法的一种改进,它是参数估计的一种有偏估计。可以消除自变量之间的多重共线性。



本文主要针对二分类Logistic回归进行代码展示:

利用Scikit-Learn对数据进行逻辑回归分析。

首先进行特征筛选,特征筛选方法有很多主要包含在Scikit-Learn的feature_selection库中,比较简单的有通过F检验来给出各个特征的F值和p值,从而可以筛选变量。

其次有递归特征消除和稳定性选择等比较新的方法。这里使用了稳定性选择方法中的随机逻辑回归进行特征筛选,然后利用筛选后的特征建立逻辑回归模型,输出平均正确率。

其代码如下:

#-*- coding: utf-8 -*-

import pandasas pd

filename ='path'

data = pd.read_excel(filename)

x = data.iloc[:,:8].as_matrix()

y = data.iloc[:,8].as_matrix()

from sklearn.linear_modelimport LogisticRegressionas LR

from sklearn.linear_modelimport RandomizedLogisticRegressionas RLR

rlr = RLR()#建立随机逻辑回归模型,筛选变量

rlr.fit(x, y) #训练模型

rlr.get_support()#获取特征筛选结果,也可以通过.scores_方法获取各个特征的分数

print(u'')

print(u'%s' %','.join(data.columns[rlr.get_support()]))

x = data[data.columns[rlr.get_support()]].as_matrix()#筛选好特征

lr = LR()#建立逻辑货柜模型

lr.fit(x, y)#用筛选后的特征数据来训练模型

print(u'逻辑回归模型训练结束')

print(u'模型的平均正确率为:%s' % lr.score(x, y))#给出模型的平均正确率。

逻辑回归本质上还是一种线性模型,因此这里的 模型有效性检验本质上还是在做线性相关检验,因此筛选出来的变量,说明和结果具有比较强的线性相关性。对于非线性关系的变量筛选方法还有决策树、神经网络等,接下来的文章会继续介绍。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容