联邦学习

前言
随着近些年各个国家对数据的监管与使用越来越严格,以及对个人信息数据、科学数据、医疗数据等多种数据的保护,从而加剧了数据孤岛现象的出现,导致企业之间的数据合作、交换过程中,对数据共享的安全性和使用合理性提出了更高的要求。

联邦学习概念
联邦机器学习是一种特殊的分布式学习,又称联邦学习,联合学习,联盟学习,是2016年由Google率先提出,在满足用户隐私安全、数据安全和政府法规的要求下使用数据进行建模,进而解决数据孤岛问题。

image.png

联邦学习分类
考虑到在工业中的应用,联邦学习主要分为横向联邦学习、纵向联邦学习和联邦迁移学习。
横向联邦学习特点:数据的特征维度相同,通过联邦学习聚合更多的数据样本,解决单边建模数据量不足的问题。

image.png

纵向联邦学习特点:数据样本的ID是一致的,数据的特征不同,使用联邦学习丰富样本的特征,从而更精准的刻画样本。
image.png

联邦迁移学习特点:数据样本特征和数量都较少,使用联邦学习将所有样本和特征空间进行联合建模。

image.png

联邦学习中保护隐私和安全的方法
1、 同态加密Homomorphic Encryption (HE)
对密文进行特定形式的代数运算得到仍然是加密的结果,将其解密后所得到的结果与对明文进行同样的运算结果一致。
2、 多方安全计算Secure Multiparty Computation (MPC)
解决一组互不信任的参与者之间保护隐私的协同计算问题,并确保输入的独立性,计算的正确性,同时不泄露各输入值给参与计算的其他成员。
3、 姚式混淆电路Yao' s Garbled Circuit
4、 差分隐私Differential Privacy(DP)
通过引入随机机制来抵御差分攻击,以达到保护隐私的目的。

联邦学习开源框架
1、 FATE(Federated AI Technology Enabler)框架
2、 FFL(Tensorflow Federated Framework)框架

免责声明:我们致力于快乐与技术的分享,旨在快乐与技术并存,只限于在法律范围内合理学习使用。本公众号旨在分享更多知识,不构成任何投资建议或非法用途,本人只代表作者个人观点。本文章教程只限于学习,不得用于任何非法活动,我们不承担任何责任,请悉知!
如果想要获取更多资源以及技术请加入我们(qq群、微信群以及公众号二维码):

image.png

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342