本篇内容包括:
- 方法
方法
Go 没有类。然而,仍然可以在结构体类型上定义方法。
方法接收者 出现在 func 关键字和方法名之间的参数中。
type Vertex struct {
X, Y float64
}
// 类似于Java中点语法实现
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := &Vertex{3, 4}
fmt.Println(v.Abs())
}
// 5
可以对包中的 任意 类型定义任意方法,而不仅仅是针对结构体。
但是,不能对来自其他包的类型或基础类型定义方法。
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
func main() {
f := MyFloat(-math.Sqrt2)
fmt.Println(f.Abs())
}
接收者为指针的方法
方法可以与命名类型或命名类型的指针关联。
刚刚看到的两个 Abs 方法。一个是在 *Vertex 指针类型上,而另一个在 MyFloat 值类型上。 有两个原因需要使用指针接收者。首先避免在每个方法调用中拷贝值(如果值类型是大的结构体的话会更有效率)。其次,方法可以修改接收者指向的值。
尝试修改 Abs 的定义,同时 Scale 方法使用 Vertex 代替 *Vertex 作为接收者。
当 v 是 Vertex 的时候 Scale 方法没有任何作用。Scale
修改 v
。当 v 是一个值(非指针),方法看到的是 Vertex 的副本,并且无法修改原始值。
Abs 的工作方式是一样的。只不过,仅仅读取 v
。所以读取的是原始值(通过指针)还是那个值的副本并没有关系。
type Vertex struct {
X, Y float64
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := &Vertex{3, 4}
v.Scale(5)
fmt.Println(v, v.Abs())
}
接口
接口类型是由一组方法定义的集合。
接口类型的值可以存放实现这些方法的任何值。
type Abser interface {
Abs() float64
}
func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}
a = f // a MyFloat 实现了 Abser
a = &v // a *Vertex 实现了 Abser
// 下面一行,v 是一个 Vertex(而不是 *Vertex)
// 所以没有实现 Abser。
a = v
fmt.Println(a.Abs())
}
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
隐式接口
类型通过实现那些方法来实现接口。 没有显式声明的必要;所以也就没有关键字“implements“。
隐式接口解藕了实现接口的包和定义接口的包:互不依赖。
因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义
type Reader interface {
Read(b []byte) (n int, err error)
}
type Writer interface {
Write(b []byte) (n int, err error)
}
type ReadWriter interface {
Reader
Writer
}
func main() {
var w Writer
// os.Stdout 实现了 Writer
w = os.Stdout
fmt.Fprintf(w, "hello, writer\n")
}
Stringers
一个普遍存在的接口是 fmt
包中定义的 Stringer
。
type Stringer struct {
String() string
}
Stringer
是一个可以用字符串描述自己的类型。fmt
包 (还有许多其他包)使用这个来进行输出。
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}
func main() {
a := Person{"Arthur Dent", 42}
z := Person{"Zaphod Beeblebrox", 9001}
fmt.Println(a, z)
}
// Arthur Dent (42 years) Zaphod Beeblebrox (9001 years)
错误
Go 程序使用 error 值来表示错误状态。
与 fmt.Stringer 类似,error
类型是一个内建接口:
type error interface {
Error() string
}
(与 fmt.Stringer 类似,`fmt` 包在输出时也会试图匹配 `error`。)
通常函数会返回一个 error 值,调用的它的代码应当判断这个错误是否等于 nil
, 来进行错误处理。
i, err := strconv.Atoi("42")
if err != nil {
fmt.Printf("couldn't convert number: %v\n", err)
}
fmt.Println("Converted integer:", i)
error 为 nil 时表示成功;非 nil 的 error 表示错误。
type MyError struct {
When time.Time
What string
}
func (e *MyError) Error() string {
return fmt.Sprintf("at %v, %s",
e.When, e.What)
}
func run() error {
return &MyError{
time.Now(),
"it didn't work",
}
}
func main() {
if err := run(); err != nil {
fmt.Println(err)
}
}
// at 2018-04-18 23:21:57.492848045 +0800 CST m=+0.000363471, it didn't work
Reader
io
包指定了 io.Reader
接口, 它表示从数据流结尾读取。
Go 标准库包含了这个接口的许多实现, 包括文件、网络连接、压缩、加密等等。
io.Reader
接口有一个 Read
方法:
func (T) Read(b []byte) (n int, err error)</pre>
Read
用数据填充指定的字节 slice,并且返回填充的字节数和错误信息。 在遇到数据流结尾时,返回 io.EOF
错误。
例子代码创建了一个 strings.Reader
。 并且以每次 8 字节的依次读取它的输出。
func main() {
r := strings.NewReader("Hello, Reader!")
b := make([]byte, 8)
for {
n, err := r.Read(b)
fmt.Printf("n = %v err = %v b = %v\n", n, err, b)
fmt.Printf("b[:n] = %q\n", b[:n])
if err == io.EOF {
break
}
}
}
/*
n = 8 err = <nil> b = [72 101 108 108 111 44 32 82]
b[:n] = "Hello, R"
n = 6 err = <nil> b = [101 97 100 101 114 33 32 82]
b[:n] = "eader!"
n = 0 err = EOF b = [101 97 100 101 114 33 32 82]
b[:n] = ""
*/
利用 rot13 代换密码对数据流进行修改。
type rot13Reader struct {
r io.Reader
}
// 转换byte 前进13位/后退13位
func rot13(b byte) byte {
switch {
case 'A' <= b && b <= 'M':
b = b + 13
case 'M' < b && b <= 'Z':
b = b - 13
case 'a' <= b && b <= 'm':
b = b + 13
case 'm' < b && b <= 'z':
b = b - 13
}
return b
}
// 重写Read方法
func (mr rot13Reader) Read(b []byte) (int, error) {
n, e := mr.r.Read(b)
for i := 0; i < n; i++ {
b[i] = rot13(b[i])
}
return n, e
}
func main() {
s := strings.NewReader("Lbh penpxrq gur pbqr!")
r := rot13Reader{s}
io.Copy(os.Stdout, &r)
}
Web 服务器
包 http 通过任何实现了 http.Handler
的值来响应 HTTP 请求:
package http
type Handler interface {
ServeHTTP(w ResponseWriter, r *Request)
}
在这个例子中,类型 Hello
实现了 http.Handler
。
type Hello struct{}
func (h Hello) ServeHTTP(
w http.ResponseWriter,
r *http.Request) {
fmt.Fprint(w, "Hello!")
}
func main() {
var h Hello
err := http.ListenAndServe("localhost:4000", h)
if err != nil {
log.Fatal(err)
}
}