python 函数 reduce、filter

reduce

>>> reduce(lambda x,y: x+y,[1,2,3,4,5])
15

请看官仔细观察,是否能够看出是如何运算的呢?画一个图:

image.png

还记得map是怎么运算的吗?忘了?看代码:

>>> list1 = [1,2,3,4,5,6,7,8,9]
>>> list2 = [9,8,7,6,5,4,3,2,1]
>>> map(lambda x,y: x+y, list1,list2)
[10, 10, 10, 10, 10, 10, 10, 10, 10]

对比一下,就知道两个的区别了。原来map是上下运算,reduce是横着逐个元素进行运算。

权威的解释来自官网:

reduce(function, iterable[, initializer])

Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains only one item, the first item is returned. Roughly equivalent to:

def reduce(function, iterable, initializer=None):
    it = iter(iterable)
    if initializer is None:
        try:
            initializer = next(it)
        except StopIteration:    
            raise TypeError('reduce() of empty sequence with no initial value')    
    accum_value = initializer                                                                   
    for x in it:
        accum_value = function(accum_value, x)    
    return accum_value

如果用我们熟悉的for循环来做上面reduce的事情,可以这样来做:

>>> lst = range(1,6)
>>> lst
[1, 2, 3, 4, 5]
>>> r = 0
>>> for i in range(len(lst)):
...     r += lst[i]
... 
>>> r
15

for普世的,reduce是简洁的。

为了锻炼思维,看这么一个问题,有两个list,a = [3,9,8,5,2],b=[1,4,9,2,6],计算:a[0]b[0]+a[1]b[1]+...的结果。

>>> a
[3, 9, 8, 5, 2]
>>> b
[1, 4, 9, 2, 6]

>>> zip(a,b)        #复习一下zip,下面的方法中要用到
[(3, 1), (9, 4), (8, 9), (5, 2), (2, 6)]

>>> sum(x*y for x,y in zip(a,b))    #解析后直接求和
133

>>> new_list = [x*y for x,y in zip(a,b)]    #可以看做是上面方法的分布实施
>>> #这样解析也可以:new_tuple = (x*y for x,y in zip(a,b))
>>> new_list
[3, 36, 72, 10, 12]
>>> sum(new_list)     #或者:sum(new_tuple)
133

>>> reduce(lambda sum,(x,y): sum+x*y,zip(a,b),0)    #这个方法是在耍酷呢吗?
133

>>> from operator import add,mul            #耍酷的方法也不止一个
>>> reduce(add,map(mul,a,b))
133

>>> reduce(lambda x,y: x+y, map(lambda x,y: x*y, a,b))  #map,reduce,lambda都齐全了,更酷吗?
133

filter

filter的中文含义是“过滤器”,在python中,它就是起到了过滤器的作用。首先看官方说明:

filter(function, iterable)

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。

该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。

通过下面代码体会:

>>> numbers = range(-5,5)
>>> numbers
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]

>>> filter(lambda x: x>0, numbers) 
[1, 2, 3, 4]

>>> [x for x in numbers if x>0]     #与上面那句等效
[1, 2, 3, 4]

>>> filter(lambda c: c!='i', 'qiwsir')  #能不能对应上面文档说明那句话呢?
'qwsr'                                  #“If iterable is a string or a tuple, the result also has that type;”

至此,用两此介绍了几个小函数,这些函数在对程序的性能提高上,并没有显著或者稳定预期,但是,在代码的简洁上,是有目共睹的。有时候是可以用来秀一秀,彰显python的优雅和自己耍酷。

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 文:郑元春 人生苦短,我用Python! 0x00:函数式编程 describe what to do, rath...
    北静王阅读 4,826评论 1 15
  • 《伊甸园》 我觉得自己发臭了, 臭不可闻。 我自己犹如一具死尸, 死去多时而不自知。 我的身上已经溃烂, 流出来黄...
    九五乾谦阅读 3,385评论 3 15
  • 我今天在驾驶无人机的时候驾驶的很好,一开始只会搞上下,而且还搞不好,现在我会搞前后了,不过只是不知道他的摄像头在哪...
    严爸学习星球阅读 1,202评论 0 0
  • 忙碌了一天,刚坐下。准备写日更。在忙碌的过程中,一直记着,今天有一件事情没有完成。日更。已经形成习惯了。 昨晚...
    洋仔WyaNG阅读 2,472评论 1 1
  • 故人入我梦,明我长相忆(作者:云淡风轻) 下午第四节正开例会期间,突然来电铃声大作,吓了我一跳,急忙挂了,...
    我是慕一阅读 3,414评论 2 2

友情链接更多精彩内容