demo.py / NGnews / WNUT_17

基于Classifier的例子


from flair.data import Corpus
from flair.datasets import WNUT_17, NEWSGROUPS
from typing import List
from flair.embeddings import FastTextEmbeddings, ELMoEmbeddings, TokenEmbeddings, WordEmbeddings, FlairEmbeddings, BertEmbeddings, PooledFlairEmbeddings
from flair.embeddings import DocumentRNNEmbeddings, DocumentPoolEmbeddings
# 1. get the corpus
corpus: Corpus = NEWSGROUPS()
print(corpus)

# 2. what tag do we want to predict?
tag_type = 'class'

# 3. make the tag dictionary from the corpus
label_dictionary = corpus.make_label_dictionary()
print(label_dictionary)

# 4. initialize embeddings
news_backward = "/home/huyufeng/flair/flair/checkpoints/news-backward-0.4.1.pt"
fast_text_embedding = WordEmbeddings(".flair/embeddings/en-fasttext-news-300d-1M")
bert_path = "/home/huyufeng/glove/uncased_L-12_H-768_A-12"
bert_embedding = BertEmbeddings(bert_path, layers='-1')
glove_embedding = WordEmbeddings('glove')
embeddings: List[TokenEmbeddings] = [
    # comment in these lines to use flair embeddings
    fast_text_embedding,
]

# document_embeddings = DocumentPoolEmbeddings([embeddings], fine_tune_mode='nonlinear')
document_embeddings = DocumentRNNEmbeddings(embeddings,
                                          hidden_size=128,
                                          rnn_layers=1,
                                          bidirectional=True,
                                          rnn_type='LSTM'
                                          )

# 5. initialize sequence TextClassifier
from flair.models import TextClassifier
classifier: TextClassifier = TextClassifier(document_embeddings=document_embeddings,
                                          label_dictionary=label_dictionary,
                                        #   label_type=tag_type,
                                          ).cuda()

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer: ModelTrainer = ModelTrainer(classifier, corpus)

# 7. start training
root = "resources/taggers/"
# from date import 
file_root = root + 'test/'
trainer.train(file_root,
              learning_rate=0.1,
              mini_batch_size=32,
              max_epochs=150)

# 8. plot weight traces (optional)
from flair.visual.training_curves import Plotter
plotter = Plotter()
plotter.plot_weights(file_root + 'weights.txt')

基于 Tagging模型的例子


from flair.data import Corpus
from flair.datasets import WNUT_17
from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings
from typing import List

# 1. get the corpus
corpus: Corpus = WNUT_17().downsample(0.1)
print(corpus)

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
print(tag_dictionary)

# 4. initialize embeddings
embedding_types: List[TokenEmbeddings] = [

    WordEmbeddings('glove'),

    # comment in this line to use character embeddings
    # CharacterEmbeddings(),

    # comment in these lines to use flair embeddings
    # FlairEmbeddings('news-forward'),
    # FlairEmbeddings('news-backward'),
]

embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger: SequenceTagger = SequenceTagger(hidden_size=256,
                                        embeddings=embeddings,
                                        tag_dictionary=tag_dictionary,
                                        tag_type=tag_type,
                                        use_crf=True)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer: ModelTrainer = ModelTrainer(tagger, corpus)

# 7. start training
trainer.train('resources/taggers/example-ner',
              learning_rate=0.1,
              mini_batch_size=32,
              max_epochs=150)

# 8. plot weight traces (optional)
from flair.visual.training_curves import Plotter
plotter = Plotter()
plotter.plot_weights('resources/taggers/example-ner/weights.txt')
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343