论文阅读_代码生成模型_CodeGeeX

英文名称: CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evaluations on HumanEval-X
中文名称: CodeGeeX:一种用于代码生成的预训练模型,并在HumanEval-X上进行多语言评估
链接: https://arxiv.org/abs/2303.17568
代码: https://github.com/THUDM/CodeGeeX 7.6k Star
     https://github.com/THUDM/CodeGeeX2 6.5k Star
作者: Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, Jie Tang
机构: 清华大学, Zhipu.AI, 华为
日期: 2023-03-30
引用次数: 89

1 读后感

这是一篇比较早的论文,于 2022 年 4 月至 6 月期间,在 1,536 个 Ascend 910 AI 处理器集群上,对 23 种编程语言进行了训练,总共使用了超过 850B 个 token,模型于 2022 年 9 月公开发布。

该论文介绍了 CodeGeeX 的第一代技术,而 CodeGeeX2 则基于 ChatGLM2,底层结构转向了 llama2。新版本没有附带新的论文和开源代码。

通过阅读这篇论文,我们可以了解到开发代码生成的起始阶段,包括:现有对基础架构的调整、数据组织和模型评估的过程。从代码实现的角度来看,CodeGeeX 是完全开源的。它使用 Mindspore 作为深度学习框架,而非主流的 torch。不过,它提供了类似于 torch 的调用方法,所以只需简单浏览即可。

与 copilot 相比,CodeGeeX 免费使用的。我的使用体验是:功能差异不大,只是质量稍逊色一些。

2 摘要

目标:介绍 CodeGeeX,一个拥有 130 亿参数的,支持多编程语言的代码生成模型。

方法:CodeGeeX 用 850 B 个 token 进行了模型预训练,涵盖了 23 种编程语言。

结论:实验结果表明,CodeGeeX 在性能上优于规模相似的多语言代码模型。

3 引言

主要贡献

  • 推出了 CodeGeeX,一个 13B 参数的 23 语言代码生成模型,其在代码生成和翻译上超过了同等规模的多语言基线。
  • 为 VS Code、JebBrains 和 Tencent Cloud Studio 开发了 CodeGeeX 扩展插件,比 Copilot 有更多功能,包括代码完成、生成、翻译和解释,且能提高 83.4% 用户的编码效率。
  • 创建了 HumanEval-X 基准测试,以评估多语言代码模型在代码生成和翻译任务的功能正确性,推动对预训练代码模型的理解和发展。

4 实现

4.1 模型架构

基于 Transformer 框架,采用了仅解码器网络进行自回归语言建模。CodeGeeX 的核心架构是一个 39 层的转换器解码器。在每个 Transformer 层中,应用了多头自注意力机制,然后是 MLP 层、层归一化和残差连接。并使用了 FastGELU 激活函数。

采用 GPT 范式,在大量未标记的代码数据上训练模型。

在顶部查询层和解码方面,原始的 GPT 模型使用池函数来获取最终输出。而文中模型在所有其他转换器层之上使用了一个额外的查询层,并通过注意力来获得最终的嵌入。

4.2 预训练

4.2.1 训练数据

训练语料库包含两部分:

第一部分来自开源代码数据集,包括 Pile(Gao 等人,2020 年)和 CodeParrot3。Pile 包含了 GitHub 上星级超过 100 的公共仓库的子集,从中选择了 23 种流行编程语言的文件,包括 C++,Python,Java,JavaScript,C,Go 等。根据每个文件的后缀和它所属仓库的主要语言来确定编程语言。CodeParrot 是来自 BigQuery 的另一个公开的 Python 数据集。

第二部分是直接从 GitHub 公共仓库中抓取的 Python,Java 和 C++ 的补充数据,这些数据在第一部分中没有出现。选择的仓库至少有一个星级,总大小在 10MB 以内,然后过滤掉那些:1)平均每行超过 100 个字符的文件,2)自动生成的文件,3)字母比例小于 40% 的文件,4)大于 100KB 或小于 1KB 的文件。按照 PEP8 标准格式化 Python 代码。

4.2.2 Tokenization

考虑到 1)代码数据中存在大量自然语言注释,2)变量、函数和类的命名通常是有意义的词,将代码数据与文本数据相同,并应用 GPT-2 标记器。由于词汇表包含来自各种自然语言的标记,因此它允许 CodeGeeX 处理英语以外的语言的标记,如中文、法语、俄语、日语等。最终的词汇量为 52,224 。

4.2.3 输入词和位置嵌入

在给定 tokens 后,每个 token 会与一个词嵌入相关联,同时也会获取位置信息的嵌入。这两种嵌入相加后形成模型的输入嵌入,最后整个序列被转换为输入嵌入。

4.3 训练

在 Ascend 910 上进行并行训练。CodeGeeX 在带有 Mindspore(v1.7.0)的 Ascend 910 AI 处理器(32GB)集群上进行了训练。与 NVIDIA GPU 和 PyTorch/TensorFlow 相比,Ascend 和 Mindspore 相对较新。整个预训练过程需要两个月的时间,在 192 个节点和 1,536 个 AI 处理器上,850B 代币,相当于 5+ 个 epoch(213,000 步)。

4.4 快速推理

为了提供预训练的 CodeGeeX,实现了一个纯 PyTorch 版本的 CodeGeeX,它支持在 NVIDIA GPU 上进行推理。为了实现快速且节省内存的推理,将量化和加速技术应用于预训练的 CodeGeeX。

量化前后对比如下:

5 评测

主实验结果如下:

后面的 CodeGeeX2 相比 CodeGeeX 又好很多,下图取自 CodeGeeX2 github。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容