2022年了你还不了解加解密吗

前言

加密解密是前后端开发经常需要使用到的技术,应用场景包括不限于用户鉴权、数据传输等,不同的应用场景也会需要使用到不同的签名加密算法,或者需要搭配不一样的签名加密算法来达到业务目标。所以了解加解密,以及常用的加解密函数库,可以根据不同的业务场景,选择适合当下业务场景的加解密函数库。

安全性威胁

这里借用 workPlus 对于安全性威胁概括,进行说明:

第一,中断

攻击者有意破坏和切断他人在网络上的通信,这是对可用性的攻击。

第二,截获

属于被动攻击,攻击者从网络上窃听他人的通信内容,破坏信息的机密性。

第三,篡改

攻击者故意篡改网络上传送的报文,这是对完整性的攻击。

第四,伪造

攻击者伪造信息在网络传送,这是对真实性的攻击。

file

加密的意义

  1. 数据加密

    a. 敏感数据的加密 :敏感数据进行完整性校验和加密存储, 有效防止敏感数据被窃取,篡改,权限被非法获取;

    b. 金融支付保护:保证支付数据在传输和存储过程中的完整性、保密性和支付身份的认证、支付过程的不可否认性;

    c. 电子票据验伪:保证电子合同、电子发票、电子保单、电子病历在传输、存储过程中的保密性和完整性;

    d. 视频监控安全:保证视频、人脸、车辆、轨迹等隐私信息,以及个人数据在存储过程中的保密性,防止数据泄露;

  2. 信息安全:

    a. 撞库操作:是指收集已经在互联网上泄漏的用户和密码信息, 生成对应的字典表,并尝试批量登录其他网站,然后得到一系列可以登录的用户, 撞库的原因是由于信息泄漏, 而且泄漏的数据没有加密或者加密的方式比较弱,这样可以获得到原来的用户和密码;

加解密的分类

  • 对称加密

    a. 定义: 对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的,所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信的安全性至关重要

    b. 特点:对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。

    c. 不足:秘钥的管理和分发非常困难,不够安全。在数据传送前,发送方和接收方必须商定好秘钥,然后双方都必须要保存好秘钥,如果一方的秘钥被泄露,那么加密信息也就不安全了。另外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的唯一秘钥,这会使得收、发双方所拥有的钥匙数量巨大,密钥管理成为双方的负担。

    d. 具体算法: DES,AES,3DES,凯撒加密算法等。

    file
  • 非对称加密

    a. 定义: 非对称加密算法需要两个密钥:公开密钥(publickey: 简称公钥)和私有密钥(privatekey: 简称私钥)。公钥私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密。

    b. 流程: 甲方生成一对密钥并将公钥公开,需要向甲方发送信息的其他角色(乙方)使用该密钥(甲方的公钥)对机密信息进行加密后再发送给甲方;甲方再用自己私钥对加密后的信息进行解密。甲方想要回复乙方时正好相反,使用乙方的公钥对数据进行加密,同理,乙方使用自己的私钥来进行解密。

    c. 特点: 算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。

    d. 不足 :非对称加密算法比对称加密算法慢数千倍。

    e. 具体算法: RSA, RSA可以通过认证来防止中间人攻击, ECC(椭圆曲线加密算法)。

    file
  • 混合加密

    a. 流程: 服务器用明文的方式给客户端发送自己的公钥,客户端收到公钥之后,会生成一把密钥(对称加密用的),然后用服务器的公钥对这把密钥进行加密,之后再把密钥传输给服务器,服务器收到之后进行解密,最后服务器就可以安全着得到这把密钥了,而客户端也有同样一把密钥,他们就可以进行对称加密了。

    b. 特点: 混合加密则采取两家之长,即解决了秘钥的安全配送问题,同时也提高了加密与解密效率。

    file
  • 数字签名

    a. 流程:发送报文时,发送方用一个哈希函数从报文文本中生成报文摘要,然后用发送方的私钥对这个摘要进行加密,这个加密后的摘要将作为报文的数字签名和报文一起发送给接收方,接收方首先用与发送方一样的哈希函数从接收到的原始报文中计算出报文摘要,接着再公钥来对报文附加的数字签名进行解密,如果这两个摘要相同、那么接收方就能确认该报文是发送方的。

    b. 数字签名有两种功效:一是能确定消息确实是由发送方签名并发出来的,因为别人假冒不了发送方的签名。二是数字签名能确定消息的完整性。因为数字签名的特点是它代表了文件的特征,文件如果发生改变,数字摘要的值也将发生变化。不同的文件将得到不同的数字摘要。 一次数字签名涉及到一个哈希函数、接收者的公钥、发送方的私钥

    file
  • 数字证书(或简称证书):是在 Internet 上唯一地标识人员和资源的电子文件。证书使两个实体之间能够进行安全、保密的通信。

file
file

加解密的应用场景

目前业务中使用的是sm2进行加解密

国密即国家密码局认定的国产密码算法。主要有SM1,SM2,SM3,SM4。密钥长度和分组长度均为128位。
1:SM1 为对称加密。其加密强度与AES相当。该算法不公开,调用该算法时,需要通过加密芯片的接口进行调用。
2:SM2为非对称加密,基于ECC。该算法已公开。由于该算法基于ECC,故其签名速度与秘钥生成速度都快于RSA。ECC 256位(SM2采用的就是ECC 256位的一种)安全强度比RSA 2048位高,但运算速度快于RSA。
3:SM3 消息摘要。可以用MD5作为对比理解。该算法已公开。校验结果为256位。
4:SM4 无线局域网标准的分组数据算法。对称加密,密钥长度和分组长度均为128位。

const sm2 = require('sm-crypto').sm2; // uic中 
// 控制台中的加密解密应用 
import { SM2 } from 'gm-crypto'; 
// sm2加密 
export function encryptSM(str, key) {     
  const result = SM2.encrypt(str, key, {         
    inputEncoding: 'utf8',         
    outputEncoding: 'hex', // 支持 hex/base64 等格式
});     
  // 04 表示非压缩     
  return '04' + result; 
} 
// sm2解密 
export function decryptSM(str, key) {     
  return SM2.decrypt(str, key, {         
    inputEncoding: 'hex',         
    outputEncoding: 'utf8', // 支持 hex/base64 等格式     
  }); 
} 

思考

  1. 非对称加密中公私钥都可以加密,那么什么时候用公钥加密,什么时候用私钥“加密” ?
  2. 什么是数字签名,数字签名的作用是什么?
  3. 为什么要对数据的摘要进行签名,而不是直接计算原始数据的数字签名?
  4. 什么是数字证书,数字证书解决了什么问题?
  5. 前端进行加密到底有没有用?

前端加密不是决定性的保护措施,但却是一种有意义的低成本安全增强方案。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容

  • 1.前言(老司机直接跳过) 为什么js需要加密 谈到加密,大多数人应用场景都在于后端接口的加密签名校验。这种一般...
    麻瓜三号阅读 1,319评论 0 0
  • ** 网络分层**OSI七层模型OSI七层协议模型主要是:应用层(Application)、表示层(Present...
    程序农猿阅读 2,300评论 0 2
  • 本文主要介绍移动端的加解密算法的分类、其优缺点特性及应用,帮助读者由浅入深地了解和选择加解密算法。文中会包含算法的...
    苹果粉阅读 11,493评论 5 29
  • 1 前言 面对 MD5、SHA、DES、AES、RSA 等等这些名词你是否有很多问号?这些名词都是什么? 还有什么...
    you的日常阅读 485评论 0 14
  • IOS应用安全-加解密算法简述 导读客户端经常遇到需要对数据进行加密的情况,那应该如何加密,选用什么样的加密算法,...
    萝卜_7fad阅读 634评论 0 0