Pytorch导出ONNX踩坑指南

相对与ONNX模型,Pytorch模型经常较为松散,API的限制也往往较为宽松。因此,在导出的过程中,不可避免地会遇到导出失败的问题。可以预见到,这块API可能在不久的将来会发生变化。

ONNX导出

ONNX导出的基本操作比较简单。官网上的例子是:

import torch
import torchvision

dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
model = torchvision.models.alexnet(pretrained=True).cuda()

# Providing input and output names sets the display names for values
# within the model's graph. Setting these does not change the semantics
# of the graph; it is only for readability.
#
# The inputs to the network consist of the flat list of inputs (i.e.
# the values you would pass to the forward() method) followed by the
# flat list of parameters. You can partially specify names, i.e. provide
# a list here shorter than the number of inputs to the model, and we will
# only set that subset of names, starting from the beginning.
input_names = [ "actual_input_1" ] + [ "learned_%d" % i for i in range(16) ]
output_names = [ "output1" ]

torch.onnx.export(model, dummy_input, "alexnet.onnx", verbose=True, input_names=input_names, output_names=output_names)

可惜真要这么容易就好了

ONNX导出验证脚本

import onnxruntime
import numpy as np

sess = onnxruntime.InferenceSession('./model.onnx', None)

# 以图像分类为例,batchsize设为2测试导出模型支持batching。
sess.run(None, {'input_1': np.random.rand(2, 3, img_height, img_width).astype('float32')})

让导出模型支持同时处理多个数据(Batching)

支持Batching需要制定Dynamic Axes,即可变的维度。

案例:

torch.export(...,
  input_names=['input_1'],
  output_names=['output_1'],
  dynamic_axes={
    'input_1': [0],  # 第0维是batch dimension
    'output_1': [0],
  })

解决Caffe2运行报错

keep_initializers_as_inputs 这个参数是False的情况下,在Caffe2中报错:IndexError: _Map_base::at. 参考https://github.com/onnx/onnx/issues/2458

opset 11在onnxruntime中运行时没使用GPU

问题比较复杂。貌似tensorflow也有类似问题。导出时添加参数do_constant_folding=True或许可以解决。
参考https://github.com/NVIDIA/triton-inference-server/issues/1080

List of tensor的导出

定长list

定长list会导出为一个tuple

变长list

Pytorch 1.4,ONNX 9不支持变长List的导出。之后的Pytorch版本有支持,需要更高版本的ONNX

不支持的操作

  • Tensor in-place indexed assignment like data[index] = new_data is currently not supported in exporting. One way to resolve this kind of issue is to use operator scatter, explicitly updating the original tensor.

  • There is no concept of tensor list in ONNX. Without this concept, it is very hard to export operators that consume or produce tensor list, especially when the length of the tensor list is not known at export time.

  • Only tuples, lists and Variables are supported as JIT inputs/outputs. Dictionaries and strings are also accepted but their usage is not recommended. Users need to verify their dict inputs carefully, and keep in mind that dynamic lookups are not available.

  • PyTorch and ONNX backends(Caffe2, ONNX Runtime, etc) often have implementations of operators with some numeric differences. Depending on model structure, these differences may be negligible, but they can also cause major divergences in behavior (especially on untrained models.) We allow Caffe2 to call directly to Torch implementations of operators, to help you smooth over these differences when precision is important, and to also document these differences.

不一致的Operator

Expand

Pytorch中,Expand未改动的dim可以指定为-1,导出到ONNX中时,需要手动指定每个dim的值。如:

Pytorch:
a = a.expand(10, -1, -1)
ONNX:
a = a.expand(10, a.size(1), a.size(2))

Squeeze

Pytorch中,Squeeze一个不为1维的dim不会有任何效果。ONNX会报错

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容

  • tensorflow开发API 架构 Modules app module: Generic entry poin...
    sennchi阅读 1,348评论 0 2
  • NAME dnsmasq - A lightweight DHCP and caching DNS server....
    ximitc阅读 2,844评论 0 0
  • This is a pre-print version. Official version: http://rsi...
    hydro阅读 605评论 0 0
  • 啥都入門一下,啥都不精。所有的都是按著廖雪峰大神的腳步走。从Node.js官网下载对应平台的安装程序,网速慢的童鞋...
    mild_chen阅读 259评论 0 0
  • 格式 显示普通字符(双引号可以忽略) 显示转移字符 结果: 显示变量reed命令从标准输入中读取一行,并把输入行的...
    AsaGuo阅读 567评论 0 1