相对与ONNX模型,Pytorch模型经常较为松散,API的限制也往往较为宽松。因此,在导出的过程中,不可避免地会遇到导出失败的问题。可以预见到,这块API可能在不久的将来会发生变化。
ONNX导出
ONNX导出的基本操作比较简单。官网上的例子是:
import torch
import torchvision
dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
model = torchvision.models.alexnet(pretrained=True).cuda()
# Providing input and output names sets the display names for values
# within the model's graph. Setting these does not change the semantics
# of the graph; it is only for readability.
#
# The inputs to the network consist of the flat list of inputs (i.e.
# the values you would pass to the forward() method) followed by the
# flat list of parameters. You can partially specify names, i.e. provide
# a list here shorter than the number of inputs to the model, and we will
# only set that subset of names, starting from the beginning.
input_names = [ "actual_input_1" ] + [ "learned_%d" % i for i in range(16) ]
output_names = [ "output1" ]
torch.onnx.export(model, dummy_input, "alexnet.onnx", verbose=True, input_names=input_names, output_names=output_names)
可惜真要这么容易就好了
ONNX导出验证脚本
import onnxruntime
import numpy as np
sess = onnxruntime.InferenceSession('./model.onnx', None)
# 以图像分类为例,batchsize设为2测试导出模型支持batching。
sess.run(None, {'input_1': np.random.rand(2, 3, img_height, img_width).astype('float32')})
让导出模型支持同时处理多个数据(Batching)
支持Batching需要制定Dynamic Axes,即可变的维度。
案例:
torch.export(...,
input_names=['input_1'],
output_names=['output_1'],
dynamic_axes={
'input_1': [0], # 第0维是batch dimension
'output_1': [0],
})
解决Caffe2运行报错
keep_initializers_as_inputs 这个参数是False的情况下,在Caffe2中报错:IndexError: _Map_base::at. 参考https://github.com/onnx/onnx/issues/2458
opset 11在onnxruntime中运行时没使用GPU
问题比较复杂。貌似tensorflow也有类似问题。导出时添加参数do_constant_folding=True或许可以解决。
参考https://github.com/NVIDIA/triton-inference-server/issues/1080
List of tensor的导出
定长list
定长list会导出为一个tuple
变长list
Pytorch 1.4,ONNX 9不支持变长List的导出。之后的Pytorch版本有支持,需要更高版本的ONNX
不支持的操作
Tensor in-place indexed assignment like data[index] = new_data is currently not supported in exporting. One way to resolve this kind of issue is to use operator scatter, explicitly updating the original tensor.
There is no concept of tensor list in ONNX. Without this concept, it is very hard to export operators that consume or produce tensor list, especially when the length of the tensor list is not known at export time.
Only tuples, lists and Variables are supported as JIT inputs/outputs. Dictionaries and strings are also accepted but their usage is not recommended. Users need to verify their dict inputs carefully, and keep in mind that dynamic lookups are not available.
PyTorch and ONNX backends(Caffe2, ONNX Runtime, etc) often have implementations of operators with some numeric differences. Depending on model structure, these differences may be negligible, but they can also cause major divergences in behavior (especially on untrained models.) We allow Caffe2 to call directly to Torch implementations of operators, to help you smooth over these differences when precision is important, and to also document these differences.
不一致的Operator
Expand
Pytorch中,Expand未改动的dim可以指定为-1,导出到ONNX中时,需要手动指定每个dim的值。如:
Pytorch:
a = a.expand(10, -1, -1)
ONNX:
a = a.expand(10, a.size(1), a.size(2))
Squeeze
Pytorch中,Squeeze一个不为1维的dim不会有任何效果。ONNX会报错