【转载】K近邻算法

好文

http://www.cnblogs.com/pinard/p/6061661.html

KNN算法小结

KNN算法是很基本的机器学习算法了,它非常容易学习,在维度很高的时候也有很好的分类效率,因此运用也很广泛,这里总结下KNN的优缺点。

KNN的主要优点有:

1) 理论成熟,思想简单,既可以用来做分类也可以用来做回归

2) 可用于非线性分类

3) 训练时间复杂度比支持向量机之类的算法低,仅为O(n)

4) 和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感

5) 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合

6)该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分

KNN的主要缺点有:

1)计算量大,尤其是特征数非常多的时候

2)样本不平衡的时候,对稀有类别的预测准确率低

3)KD树,球树之类的模型建立需要大量的内存

4)使用懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢

5)相比决策树模型,KNN模型可解释性不强

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容