match、match_phrase的区别

一、数据准备

PUT /tehero_index
{
  "settings": {
    "index": {
      "number_of_shards": 1,
      "number_of_replicas": 1
    }
  },
  "mappings": {
    "properties": {
        "id": {
          "type": "integer"
        },
        "content": {
          "type": "text",
          "fields": {
            "ik_max_analyzer": {
              "type": "text",
              "analyzer": "ik_max_word",
              "search_analyzer": "ik_max_word"
            }
          }
        },
        "name":{
          "type":"text"
        },
        "createAt": {
          "type": "date"
        }
      }
  }
}

导入测试数据

POST /tehero_index/_doc/1
{ "id" : 1, "content" : "关注我,系统学编程"}
POST /tehero_index/_doc/2
{ "id" : 1, "content" : "系统学编程,关注我"}
POST /tehero_index/_doc/3
{ "id" : 1, "content" : "系统编程,关注我"}
POST /tehero_index/_doc/4
{ "id" : 1, "content" : "关注我,间隔系统学编程"}

查看全部数据:

POST /tehero_index/_search 
{ "query":{ "match_all": { } } }

原始数据:
{ "id" : 1,"content":"关注我,系统学编程" }
{ "id" : 2,"content":"系统学编程,关注我" }
{ "id" : 3,"content":"系统编程,关注我" }
{ "id" : 4,"content":"关注我,间隔系统学编程" }

三、match query 对应到mysql

POST /tehero_index/_search 
{ "query":{ "match":{ "content":"系统编程" } } }


DSL执行步骤分析:

1)检索词“系统编程”被分词器分词为两个Token【系统】【编程】;
2)将这两个Token在【倒排索引】中,针对Token字段进行检索,等价于sql:【where Token = 系统 or Token = 编程】;
3)对照图【数据的倒排序索引】,可见,该DSL能检索到所有文档,文档3的评分最高(因为它包含两个Token),其他3个文档评分相同。

三、match_phrase query

match_phrase查询分析文本并根据分析的文本创建一个短语查询。match_phrase 会将检索关键词分词。match_phrase的分词结果必须在被检索字段的分词中都包含,而且顺序必须相同,而且默认必须都是连续的。

使用 match_phrase 查询:

POST /tehero_index/_doc/_search
{
    "query": {
        "match_phrase": {
            "content":"关注我,系统学"
        }
    }
}

结果:只有文档1

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.730023,
    "hits" : [
      {
        "_index" : "tehero_index",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.730023,
        "_source" : {
          "id" : 1,
          "content" : "关注我,系统学编程"
        }
      }
    ]
  }
}

使用 match 查询:

POST /tehero_index/_search 
{ "query":{ "match":{ "content":"关注我,系统学" } } }

# 可以查询出所有结果

分析:检索词“关注我,系统学”会被分词为3个Token【关注、我、系统学】;而文档1、文档2和文档4 的content被分词后都包含这3个关键词,但是只有文档1的Token的顺序和检索词一致,且连续。所以使用 match_phrase 查询只能查询到文档1(ps:文档2 Token顺序不一致;文档4 Token不连续;文档3 Token没有完全包含)。使用 match查询可以查询到所有文档,是因为所有文档都有【关注、我】这两个Token。

match_phrase 核心参数:slop 参数-Token之间的位置距离容差值

POST /tehero_index/_doc/_search
{
    "query": {
        "match_phrase": {
            "content":{
              "query": "关注我,系统学",
                "slop":2
            }
        }
    }
}

# 结果:文档1和文档4都被检索出来
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容