【scikit-learn】学习Python来分类现实世界的数据

引入

一个机器可以根据照片来辨别鲜花的品种吗?在机器学习角度,这其实是一个分类问题,即机器根据不同品种鲜花的数据进行学习,使其可以对未标记的测试图片数据进行分类。
这一小节,我们还是从scikit-learn出发,理解基本的分类原则,多动手实践。

Iris数据集

Iris flower数据集是1936年由Sir Ronald Fisher引入的经典多维数据集,可以作为判别分析(discriminant analysis)的样本。该数据集包含Iris花的三个品种(Iris setosa, Iris virginica and Iris versicolor)各50个样本,每个样本还有4个特征参数(分别是萼片<sepals>的长宽和花瓣<petals>的长宽,以厘米为单位),Fisher利用这个数据集开发了一个线性判别模型来辨别花朵的品种。
基于Fisher的线性判别模型,该数据集成为了机器学习中各种分类技术的典型实验案例。


现在我们要解决的分类问题是,当我们看到一个新的iris花朵,我们能否根据以上测量参数成功预测新iris花朵的品种。
我们利用给定标签的数据,设计一种规则进而应用到其他样本中做预测,这是基本的监督问题(分类问题)。
由于iris数据集样本量和维度都很小,所以可以方便进行可视化和操作。

数据的可视化(visualization)

scikit-learn自带有一些经典的数据集,比如用于分类的iris和digits数据集,还有用于回归分析的boston house prices数据集。
可以通过下面的方式载入数据:

from sklearn import datasets
iris = datasets.load_iris()
digits = datasets.load_digits()

该数据集是一种字典结构,数据存储在.data成员中,输出标签存储在.target成员中。

画出任意两维的数据散点图

可以用下面的方式画出任意两个维度的散点图,这里以第一维sepal length和第二维数据sepal width为例:

from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np

iris = datasets.load_iris()
irisFeatures = iris["data"]
irisFeaturesName = iris["feature_names"]
irisLabels = iris["target"]

def scatter_plot(dim1, dim2):
    for t,marker,color in zip(xrange(3),">ox","rgb"):
        # zip()接受任意多个序列参数,返回一个元组tuple列表
        # 用不同的标记和颜色画出每种品种iris花朵的前两维数据
        # We plot each class on its own to get different colored markers
        plt.scatter(irisFeatures[irisLabels == t,dim1],
                    irisFeatures[irisLabels == t,dim2],marker=marker,c=color)
    dim_meaning = {0:'setal length',1:'setal width',2:'petal length',3:'petal width'}
    plt.xlabel(dim_meaning.get(dim1))
    plt.ylabel(dim_meaning.get(dim2))

plt.subplot(231)
scatter_plot(0,1)
plt.subplot(232)
scatter_plot(0,2)
plt.subplot(233)
scatter_plot(0,3)
plt.subplot(234)
scatter_plot(1,2)
plt.subplot(235)
scatter_plot(1,3)
plt.subplot(236)
scatter_plot(2,3)

plt.show()

效果如图:


构建分类模型

根据某一维度的阈值进行分类

如果我们的目标是区别这三种花朵,我们可以做一些假设。比如花瓣的长度(petal length)好像将Iris Setosa品种与其它两种花朵区分开来。我们可以以此来写一段小代码看看这个属性的边界是什么:

petalLength = irisFeatures[:,2] #select the third column,since the features is 150*4
isSetosa = (irisLabels == 0) #label 0 means iris Setosa
maxSetosaPlength = petalLength[isSetosa].max()
minNonSetosaPlength = petalLength[~isSetosa].min()

print ('Maximum of setosa:{0} '.format(maxSetosaPlength))
print ('Minimum of others:{0} '.format(minNonSetosaPlength))

'''
显示结果是:
Maximum of setosa:1.9 
Minimum of others:3.0 
'''

我们根据实验结果可以建立一个简单的分类模型,如果花瓣长度小于2,就是Iris Setosa花朵,否则就是其他两种花朵。
这个模型的结构非常简单,是由数据的一个维度阈值来确定的。我们通过实验确定这个维度的最佳阈值。
以上的例子将Iris Setosa花朵和其他两种花朵很容易的分开了,然而我们不能立即确定Iris Virginica花朵和Iris Versicolor花朵的最佳阈值,我们甚至发现,我们无法根据某一维度的阈值将这两种类别很完美的分开。

比较准确率来得到阈值

我们先选出非Setosa的花朵。

irisFeatures = irisFeatures[~isSetosa]
labels = irisLabels[~isSetosa]
isVirginica = (labels == 2) #label 2 means iris virginica

这里我们非常依赖NumPy对于数组的操作,isSetosa是一个Boolean值数组,我们可以用它来选择出非Setosa的花朵。最后,我们还构造了一个新的Boolean数组,isVirginica。
接下来,我们对每一维度的特征写一个循环小程序,然后看一下哪一个阈值能得到更好的准确率。

# search the threshold between virginica and versicolor
irisFeatures = irisFeatures[~isSetosa]
labels = irisLabels[~isSetosa]
isVirginica = (labels == 2)    #label 2 means iris virginica

bestAccuracy = -1.0
for fi in xrange(irisFeatures.shape[1]):
    thresh = irisFeatures[:,fi].copy()
    thresh.sort()
    for t in thresh:
        pred = (irisFeatures[:,fi] > t)
        acc = (pred == isVirginica).mean()
        if acc > bestAccuracy:
            bestAccuracy = acc;
            bestFeatureIndex = fi;
            bestThreshold = t;
            
print 'Best Accuracy:\t\t',bestAccuracy
print 'Best Feature Index:\t',bestFeatureIndex
print 'Best Threshold:\t\t',bestThreshold

'''
最终结果:
Best Accuracy:      0.94
Best Feature Index: 3
Best Threshold:     1.6
'''

这里我们首先对每一维度进行排序,然后从该维度中取出任一值作为阈值的一个假设,再计算这个假设的Boolean序列和实际的标签Boolean序列的一致情况,求平均,即得到了准确率。经过所有的循环,最终得到的阈值和所对应的维度。
最后,我们得到了最佳模型针对第四维花瓣的宽度petal width,我们就可以得到这个决策边界decision boundary。

评估模型——交叉检验

上面,我们得到了一个简单的模型,并且针对训练数据实现了94%的正确率,但这个模型参数可能过于优化了。
我们需要的是评估模型针对新数据的泛化能力,所以我们需要保留一部分数据,进行更加严格的评估,而不是用训练数据做测试数据。为此,我们会保留一部分数据进行交叉检验。
这样我们就会得到训练误差和测试误差,当复杂的模型下,可能训练的准确率是100%,但是测试时效果可能只是比随机猜测好一点。

交叉检验

在许多实际应用中,数据是不充足的。为了选择更好的模型,可以采用交叉检验方法。交叉检验的基本想法是重复地使用数据;把给定数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。

S-fold交叉检验

应用最多的是S折交叉检验(S-fold cross validation),方法如下:首先随机地将已给数据切分为S个互不相交的大小相同的子集;然后利用S-1个子集的数据训练模型,利用余下的子集测试模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。



如上图,我们将数据集分成5部分,即5-fold交叉检验。接下来,我们可以对每一个fold生成一个模型,留出20%的数据进行检验。

leave-one-out交叉检验方法

留一交叉检验(leave-one-out cross validation)是S折交叉检验的特殊情形,是S为给定数据集的容量时情形。
我们可以从训练数据中挑选一个样本,然后拿其他训练数据得到模型,最后看该模型是否能将这个挑出来的样本正确的分类。

def learn_model(features,labels):
    bestAccuracy = -1.0
    for fi in xrange(features.shape[1]):
        thresh = features[:,fi].copy()
        thresh.sort()
        for t in thresh:
            pred = (features[:,fi] > t)
            acc = (pred == labels).mean()
            if acc > bestAccuracy:
                bestAccuracy = acc;
                bestFeatureIndex = fi;
                bestThreshold = t;
    '''
    print 'Best Accuracy:\t\t',bestAccuracy
    print 'Best Feature Index:\t',bestFeatureIndex
    print 'Best Threshold:\t\t',bestThreshold
    '''
    return {'dim':bestFeatureIndex, 'thresh':bestThreshold, 'accuracy':bestAccuracy}

def apply_model(features,labels,model):
    prediction = (features[:,model['dim']] > model['thresh'])
    return prediction
    
#-----------cross validation-------------
error = 0.0
for ei in range(len(irisFeatures)):
    # select all but the one at position 'ei':
    training = np.ones(len(irisFeatures), bool)
    training[ei] = False
    testing = ~training
    model = learn_model(irisFeatures[training], isVirginica[training])
    predictions = apply_model(irisFeatures[testing],
                              isVirginica[testing], model)
    error += np.sum(predictions != isVirginica[testing])

上面的程序,我们用所有的样本对一系列的模型进行了测试,最终的估计说明了模型的泛化能力。

小结

对于上面对数据集进行划分时,我们需要注意平衡分配数据。如果对于一个子集,所有的数据都来自一个类别,则结果没有代表性。
基于以上的讨论,我们利用一个简单的模型来训练,交叉检验过程给出了这个模型泛化能力的估计。

参考文献

Wiki:Iris flower data set
Building Machine Learning Systems with Python

转载请注明作者Jason Ding及其出处
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容