numpy必知必会-第三天

11 找到两个array中的通用项,并保存在新的array中
例如:
输入a = np.array([1,2,3,2,3,4,3,4,5,6]),b = np.array([7,2,10,2,7,4,9,4,9,8])
输出array([2, 4])

a = np.array([1,2,3,2,3,4,3,4,5,6])
b = np.array([7,2,10,2,7,4,9,4,9,8])
np.intersect1d(a,b)

输出:

array([2, 4])

12 从一个array中移除被另一个array包含的元素
例如:
输入a = np.array([1,2,3,4,5]),b = np.array([5,6,7,8,9])
输出array([1,2,3,4])

a = np.array([1,2,3,4,5])
b = np.array([5,6,7,8,9])
np.setdiff1d(a,b)

输出

array([1,2,3,4])

13 找到两个array中元素一样的位置
例如:
输入a = np.array([1,2,3,2,3,4,3,4,5,6]),b = np.array([7,2,10,2,7,4,9,4,9,8])
输出(array([1, 3, 5, 7]),)

a = np.array([1,2,3,2,3,4,3,4,5,6])
b = np.array([7,2,10,2,7,4,9,4,9,8])
np.where(a == b)

输出:

(array([1, 3, 5, 7]),)

注意比较的两个array的长度必须一致!

14 如何从一个array中筛选出一个范围内的元素
例如:
输入a = np.array([2, 6, 1, 9, 10, 3, 27])
输出(array([6, 9, 10]),)

a = np.array([2, 6, 1, 9, 10, 3, 27])
index = np.where((a >= 5) & (a <= 10))
a[index]

输出

array([ 6,  9, 10])

还可以用以下方式实现:

index = np.where(np.logical_and(a>=5, a<=10))
a[index]
a[(a >= 5) & (a <= 10)]

15 通过自定义的python函数,处理两个array中元素
例如:
输入
def maxx(x, y):
"""Get the maximum of two items"""
if x >= y:
return x
else:
return y

maxx(1, 5)

输出
a = np.array([5, 7, 9, 8, 6, 4, 5])
b = np.array([6, 3, 4, 8, 9, 7, 1])
pair_max(a, b)

先介绍一下numpy.vectorize

numpy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)
Parameters:
pyfunc :python函数或方法 otypes : 输出数据类型。必须将其指定为一个typecode字符串或一个数据类型说明符列表。每个输出应该有一个数据类型说明符。 doc : 函数的docstring。如果为None,则docstring将是 pyfunc.doc。
简单说就是把pyfunc的处理结果放到一个array中,组成向量。

def maxx(x, y):
    """获得两个array中的最大值"""
    if x >= y:
        return x
    else:
        return y

pair_max = np.vectorize(maxx, otypes=[float])

a = np.array([5, 7, 9, 8, 6, 4, 5])
b = np.array([6, 3, 4, 8, 9, 7, 1])

pair_max(a, b)

输入

array([6., 7., 9., 8., 9., 7., 5.])
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容

  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,451评论 0 13
  • TF API数学计算tf...... :math(1)刚开始先给一个运行实例。tf是基于图(Graph)的计算系统...
    MachineLP阅读 3,459评论 0 1
  • 换工作之后,PYTHON就放下啦,基本没接触了,也都忘记的差不多了,现在重新捡起来 1.1 NumPy Array...
    wqh8384阅读 570评论 0 1
  • 午餐 晚饭,但是我没有吃,我想如果吃了,长2斤,我得花一周时间减肥,我不愿意,这个买卖不合算,于是我毅然决然出门,...
    Happy欢颜阅读 185评论 1 1
  • 书名:《隐藏的自我-大脑的秘密生活》 | Incognito - The Secret Lives of the ...
    沐熹的星空阅读 281评论 0 0