主成分分析在R语言里面的实现(PCA学习笔记)

主成分分析在R语言里面的实现(PCA学习笔记)

简介

主成分分析(Principal Component Analysis,PCA),顾名思义,即是拿来分析’‘主成分“的。通常和 PCA 联系在一起的是降维,当手里的数据集有成千上万个特征时,PCA可以减少数据集的维数,同时保留对数据集贡献最大的特征。

本质上主成分分析是找到一个欧式空间的线性变换,把原始数据从“一组旧的标准正交基下的表示”转化成“另一组新的标准正交基下的表示”,降维发生在新的标准正交基下的表示,直接去掉了后面几个维度的坐标值。简单来说就是利用线性变换,将分析数据的方差投影到二维的坐标上。

在学生信学习过程中,PCA是我们经常用到的分析方法,目的是为了找到有共同特征的不同聚类,在处理RNA-seq数据中发挥作用,可用于判断批次效应或者离群点。

PCA用到的R包

在pca常用的R包就俩个,一个是FactoMineR包,此包常用于分析;另外一个是factoextra包,是用来做可视化的,factoextra包内含了基于ggplot2的数据可视化的函数,是一个非常实用的包。

以iris数据集为例,提取并可视化特征值

1589253676500.png

1589253950787.png

代码示例

library("FactoMineR")
library(factoextra)
iris.pca <- PCA(iris[,-5],  graph = T)
fviz_screeplot(iris.pca, addlabels = TRUE, 
               ylim = c(0, 75)
               )

提取可视化变量的结果(coord,cor,cos2,contribution)

var <- get_pca_var(iris.pca)
View(var)
head(var$coord)
#                  Dim.1      Dim.2       Dim.3       Dim.4
#Sepal.Length  0.8901688 0.36082989 -0.27565767 -0.03760602
#Sepal.Width  -0.4601427 0.88271627  0.09361987  0.01777631
#Petal.Length  0.9915552 0.02341519  0.05444699  0.11534978
#Petal.Width   0.9649790 0.06399985  0.24298265 -0.07535950
head(var$cos2)
#                 Dim.1       Dim.2       Dim.3        Dim.4
#Sepal.Length 0.7924004 0.130198208 0.075987149 0.0014142127
#Sepal.Width  0.2117313 0.779188012 0.008764681 0.0003159971
#Petal.Length 0.9831817 0.000548271 0.002964475 0.0133055723
#Petal.Width  0.9311844 0.004095980 0.059040571 0.0056790544
head(var$contrib)
#                 Dim.1       Dim.2     Dim.3     Dim.4
#Sepal.Length 27.150969 14.24440565 51.777574  6.827052
#Sepal.Width   7.254804 85.24748749  5.972245  1.525463
#Petal.Length 33.687936  0.05998389  2.019990 64.232089
#Petal.Width  31.906291  0.44812296 40.230191 27.415396

利用fviz_pca_ind函数进行可视化

fviz_pca_ind(iris.pca,
             geom.ind = 'point',
             habillage = iris$Species, # color by groups
             palette = c("#00AFBB", "#E7B800", "#FC4E07"),
             addEllipses = T # Concentration ellipses)```
1589254966726.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351