七、编码与编码格式

一、ASCII码

在计算机内部,所有的信息最终都是一个二进制值,而每一个二进制位有0和1两种状态,所以八个二进制位就可以表示出256中不同的状态,也就是说,一个字节可以表示256中不同的状态,每一个状态对应一个符号,就是256个符号。
上个世纪60年代,美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定。这被称为 ASCII 码,一直沿用至今。
ASCII码规定了128个字符的编码,这128个符号只占用一个字节的后面7位,最前面的一位统一规定为0。

二、非ASCII码

英语用128个符号编码就够了,但是用来表示其他语言,128个符号是不够的。比如,在法语中,字母上方有注音符号,它就无法用 ASCII 码表示。于是,一些欧洲国家就决定,利用字节中闲置的最高位编入新的符号。比如,法语中的é的编码为130(二进制10000010)。这样一来,这些欧洲国家使用的编码体系,可以表示最多256个符号。
但是,这里又出现了新的问题。不同的国家有不同的字母,因此,哪怕它们都使用256个符号的编码方式,代表的字母却不一样。比如,130在法语编码中代表了é,在希伯来语编码中却代表了字母Gimel (ג),在俄语编码中又会代表另一个符号。但是不管怎样,所有这些编码方式中,0--127表示的符号是一样的,不一样的只是128--255的这一段。

至于亚洲国家的文字,使用的符号就更多了,汉字就多达10万左右。一个字节只能表示256种符号,肯定是不够的,就必须使用多个字节表达一个符号。比如,简体中文常见的编码方式是 GB2312,使用两个字节表示一个汉字,所以理论上最多可以表示 256 x 256 = 65536 个符号。

三、Unicode

世界上存在着多种编码方式,同一个二进制数字可以被解释成不同的符号。因此,要想打开一个文本文件,就必须知道它的编码方式,否则用错误的编码方式解读,就会出现乱码。
可以想象,如果有一种编码,将世界上所有的符号都纳入其中。每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是 Unicode,就像它的名字都表示的,这是一种所有符号的编码。
Unicode 当然是一个很大的集合,现在的规模可以容纳100多万个符号。每个符号的编码都不一样,比如,U+0639表示阿拉伯字母AinU+0041表示英语的大写字母AU+4E25表示汉字。具体的符号对应表,可以查询unicode.org,或者专门的汉字对应表
GBK和UTF-8都是用来序列化或存储unicode编码的数据的,但是分别是2种不同的格式; 他们俩除了格式不一样之外,他们所关心的unicode编码范围也不一样,utf-8考虑了很多种不同国家的字符,涵盖整个unicode码表,所以其存储一个字符的编码的时候,使用的字节长度也从1字节到4字节不等;而GBK只考虑中文——在unicode中的一小部分——的字符,的编码,所以它算好了只要2个字节就能涵盖到绝大多数常用中文(2个字节能表示6w多种字符),所以它存储一个字符的时候,所用的字节长度是固定的;

四、Unicode的问题

最终Unicode的容量越来越大,其表示每一个符号的字节也越来越长。在这种情况下,如果用固定几个字节来表示一个符号的话,则对于最开始的字节会出现空间浪费;如果用不定的字节来描述一个符号的话,那如何才能知道到底是用了几个字节来表示一个符号?

五、解决办法:UTF-8

UTF-8 就是在互联网上使用最广的一种 Unicode 的实现方式。其他实现方式还包括 UTF-16(字符用两个字节或四个字节表示)和 UTF-32(字符用四个字节表示),不过在互联网上基本不用。重复一遍,这里的关系是,UTF-8 是 Unicode 的实现方式之一。

UTF-8 最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度。

UTF-8 的编码规则很简单,只有二条:

1)对于单字节的符号,字节的第一位设为0,后面7位为这个符号的 Unicode 码。因此对于英语字母,UTF-8 编码和 ASCII 码是相同的。

2)对于n字节的符号(n > 1),第一个字节的前n位都设为1,第n + 1位设为0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的 Unicode 码。

image.png

跟据上表,解读 UTF-8 编码非常简单。如果一个字节的第一位是0,则这个字节单独就是一个字符;如果第一位是1,则连续有多少个1,就表示当前字符占用多少个字节。

下面,还是以汉字严为例,演示如何实现 UTF-8 编码。

严的 Unicode 是4E25(100111000100101),根据上表,可以发现4E25处在第三行的范围内(0000 0800 - 0000 FFFF),因此严的 UTF-8 编码需要三个字节,即格式是1110xxxx 10xxxxxx 10xxxxxx。然后,从严的最后一个二进制位开始,依次从后向前填入格式中的x,多出的位补0。这样就得到了,严的 UTF-8 编码是11100100 10111000 10100101,转换成十六进制就是E4B8A5。

六、总结

应该说,每一种字符集本身就代表着一种编码格式,(unicode也不例外)所以当采用这些字符集的时候,就是说使用了这种编码格式。

七、getbyte方法

在java中,getBytes()方法如果不指定字符集,则得到的是一个操作系统默认的编码格式的字节数组;如果指定字符集,则得到的是在指定字符集下的字节数组
实例:

package ObjectRef;

import java.io.UnsupportedEncodingException;
/**
 * @author hankun
 * @create 2017-06-26 20:28
 */
public class Test4 {
    /**
     *
     * 1、Unicode是一种编码规范,是为解决全球字符通用编码而设计的,而UTF-8,UTF-16等是这种规范的一种实现。
     2、java内部采用Unicode编码规范,也就是支持多语言的,具体采用的UTF-16编码方式。
     3、不管程序过程中用到了gbk,iso8859-1等格式,在存储与传递的过程中实际传递的都是Unicode编码的数据,要想接收到的值不出现乱码,就要保证传过去的时候用的是A编码,接收的时候也用A编码来转换接收。
     4、如果双方的file.encoding确保都相同,那就省事了,都默认转了,但往往在不同项目交互时很多时候是不一致的,这个时候是必须要进行编码转换的。
     5、无论如论转换,java程序的数据都是要先和Unicode做转换,这样也就是能处理多语言字符集的原因了。底层保持了一致,只要在传值和接值的时候也一致就肯定不会出现乱码了。
     * */
    public static void main(String[] args) throws UnsupportedEncodingException {
        String str = "中文字符";
        System.out.println("original string---" + str);// 会正常输出原始串
        /**
         *
         * str.getBytes();  如果括号中不写charset,则采用的是Sytem.getProperty("file.encoding"),即当前文件的编码方式,
         *
         * 很多人写的是系统的默认编码,通过代码测试并非如此,实际得到的是文件的编码方式*
         *
         * str.getBytes("charset");//指定charset,即将底层存储的Unicode码解析为charset编码格式的字节数组方式
         *
         * String new_str=new String(str.getBytes("utf-8"),"gbk"));
         *
         * //将已经解析出来的字节数据转化为gbk编码格式的字符串,在内存中即为gbk格式的字节数组转为Unicode去交互传递
         */
        String new_str = new String(str.getBytes("utf-8"), "gbk");
        /**
         *
         * 此时的输出是乱码,在UTF-8的file.encoding下输出gbk格式的数据肯定是乱码,但是new_str的确是gbk编码式的
         *
         * 此时的乱码源于encoding不符,但gbk格式的new_str本身数据并没有问题,通过下面的转换也可以看得出来
         */
        System.out.println("new string----" + new_str);
        String final_str = new String(new_str.getBytes("gbk"), "utf-8");// 此处的含意与最上边的注释是一致的参数含意
        /**
         *
         *输出是正常的,此时将gbk编码格式的new_str字符串,用gbk这个charset去解析它,然后用utf-8再转码一次,
         *
         * 因为new_str确实是gbk格式的,才能经过utf-8编码得到正常的数据显示。
         */
        System.out.println("final string---" + final_str);
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354