python 面试题:三

一、题目部分

1、tcp和udp的区别?
2、对内存中栈和堆的了解?
3、爬虫框架scrapy的工作流程
4、字典、列表查询时的时间复杂度是怎样的? 
5、递归中如果没有终止条件会怎样?

二、 解答部分:

1、tcp和udp的区别?
TCP(Transmission Control Protocol,传输控制协议)是面向连接的协议,也就是说,在收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,只简单的描述下这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。

TCP三次握手过程:

1 主机A通过向主机B 发送一个含有同步序列号的标志位的数据段给主机B ,向主机B 请求建立连接,通过这个数据段,主机A告诉主机B 两件事:我想要和你通信;你可以用哪个序列号作为起始数据段来回应我.
  2 主机B 收到主机A的请求后,用一个带有确认应答(ACK)和同步序列号(SYN)标志位的数据段响应主机A,也告诉主机A两件事:我已经收到你的请求了,你可以传输数据了;你要用哪佧序列号作为起始数据段来回应我
  3 主机A收到这个数据段后,再发送一个确认应答,确认已收到主机B 的数据段:"我已收到回复,我现在要开始传输实际数据了这样3次握手就完成了,主机A和主机B 就可以传输数据了.

3次握手的特点:

  • 没有应用层的数据
  • SYN这个标志位只有在TCP建产连接时才会被置1
  • 握手完成后SYN标志位被置0

SYN攻击
在三次握手过程中,服务器发送SYN-ACK之后,收到客户端的ACK之前的TCP连接称为半连接(half-open connect).此时服务器处于Syn_RECV状态. 当收到ACK后,服务器转入ESTABLISHED状态.

SYN攻击就是 攻击客户端 在短时间内伪造大量不存在的IP地址,向服务器不断地发送syn包,服务器回复确认包,并等待客户的确认,由于源地址是不存在的,服务器需要不断的重发直至超时,这些伪造的SYN包将长时间占用未连接队列,正常的SYN请求被丢弃,目标系统运行缓慢,严重者引起网络堵塞甚至系统瘫痪。

Syn攻击是一个典型的DDOS攻击。检测SYN攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。

TCP 4次挥手:

1 当主机A完成数据传输后,将控制位FIN置1,提出停止TCP连接的请求
  2 主机B收到FIN后对其作出响应,确认这一方向上的TCP连接将关闭,将ACK置1
  3 由B 端再提出反方向的关闭请求,将FIN置1
  4 主机A对主机B的请求进行确认,将ACK置1,双方向的关闭结束.
  由TCP的三次握手和四次断开可以看出,TCP使用面向连接的通信方式,大大提高了数据通信的可靠性,使发送数据端和接收端在数据正式传输前就有了交互,为数据正式传输打下了可靠的基础。

名词解释:
ACK TCP报头的控制位之一,对数据进行确认.确认由目的端发出,用它来告诉发送端这个序列号之前的数据段都收到了.比如,确认号为X,则表示前X-1个数据段都收到了,只有当ACK=1时,确认号才有效,当ACK=0时,确认号无效,这时会要求重传数据,保证数据的完整性.
SYN 同步序列号,TCP建立连接时将这个位置1
FIN 发送端完成发送任务位,当TCP完成数据传输需要断开时,提出断开连接的一方将这位置1

TCP的包头结构:
  源端口 16位
  目标端口 16位
  序列号 32位
  回应序号 32位
  TCP头长度 4位
  reserved 6位
  控制代码 6位
  窗口大小 16位
  偏移量 16位
  校验和 16位
  选项 32位(可选)
  这样我们得出了TCP包头的最小长度,为20字节。

UDP(User Data Protocol,用户数据报协议)
  (1) UDP是一个非连接的协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。
  (2) 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等,因此一台服务机可同时向多个客户机传输相同的消息。
  (3) UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。
  (4) 吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、源端和终端主机性能的限制。
  (5)UDP使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态表(这里面有许多参数)。
  (6)UDP是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界,因此,应用程序需要选择合适的报文大小。
  我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。
UDP的包头结构:
  源端口 16位
  目的端口 16位
  长度 16位
  校验和 16位

小结TCP与UDP的区别:
  1.基于连接与无连接;
  2.对系统资源的要求(TCP较多,UDP少);
  3.UDP程序结构较简单;
  4.流模式与数据报模式 ;
  5.TCP保证数据正确性,UDP可能丢包,TCP保证数据顺序,UDP不保证。
2、对内存中栈和堆的了解?
栈:
什么是栈,它是你的电脑内存的一个特别区域,它用来存储被每一个function(包括mian()方法)创建的临时变量。栈是FILO,就是先进后出原则的结构体,它密切的被CPU管理和充分利用。每次function声明一个新的变量,它就会被“推”到栈中。然后每次一个function退出时,所有关于这个函数中定义的变量都会被释放(换句话说就是删除)。一旦栈中的变量释放,这块区域就会变成可用的,提供给其他栈中的变量。
用栈存储变量的好处是,内存是被你管理的。你不用手动的创建内存,不用当你不在需要它的时候手动释放内存。另外,由于CPU组织栈内存很高效。读出和写入栈变量是很快的。
理解栈的关键是理解概念,当一个function退出时,所有它的变量都会从栈中弹出,以后都会永远消失。因此栈中的变量本质是局部的。这和我们原来理解为变量作用域或者本地或者全局变量是相关的。在C中,一个公共的bug 是从你程序中的一个function外尝试访问一个在栈中的这个function的变量(在该function已经退出后)。
关于栈的另一个特点我们应该记住,就是存储在栈中的变量的大小有限制。而堆上创建变量不用考虑。
总结栈:
a、栈的伸长和伸缩就是函数压入或者推出局部变量。
b、我们不用自己去管理内存,变量创建和释放都是自动的。
c、栈中的变量只有在函数创建运行时存在。
堆:
堆也是我们的计算机内存中的一个区域,但是他不是自动管理的。而且也不是被CPU密切的管理着。它是一片更加自由的内存区域(很大)。要想在堆上创建内存,我们必须使用malloc() 或者calloc(),他们都是C语言编译的。一旦你在堆上分配内存,当你不在需要的时候你必须用free()去销毁。如果你不销毁或者销毁失败,你的程序就会有内存泄露。换句话说就是堆内存会一直在,其他进程无法使用。
不像栈,堆没有变量大小的限制(除了你电脑的物理限制条件外)。堆内存读出和写入都比较慢,因为它必须使用指针图访问堆内存。
栈和堆的优缺点:
栈:
a、快速访问。
b、没有必要明确的创建分类变量,因为它是自动管理的。
c、空间被CPU高效地管理着,内存不会变成碎片。
d、只有局部变量
e、受限于栈大小(取决于操作系统)
f、变量不能调整大小。
堆:
a、变量可以被全局访问
b、没有内存大小限制
c、(相对)访问比较慢
d、没有高效地使用空间,随着块内存的创建和销毁,内存可能会变成碎片。
e、你必须管理内存(变量的创建和销毁你必须要负责)
f、变量大小可以用realloc( )调整
3、爬虫框架scrapy的工作流程

a、spider解析下载器下下来的response,返回item或是links
b、item或者link经过spidermiddleware的process_spider_out( )方法,交给engine
c、engine将item交给item pipeline ,将links交给调度器
d、在调度器中,先将requests对象利用scrapy内置的指纹函数生成一个指纹对象
e、如果requests对象中的don't filter参数设置为False,并且该requests对象的指纹不在信息指纹的队列中,那么就把该request对象放到优先级队列中
f、从优先级队列中获取request对象,交给engine
g、engine将request对象交给下载器下载,期间会通过downloadmiddleware的process_request方法
h、下载器完成下载,获得response对象,将该对象交给engine,期间会经过downloadmiddleware的process_response( )方法
i、engine将获得的response对象交给spider进行解析,期间会经过spidermiddleware的process_spider_input()的方法
j、从a开始循环

4、字典、列表查询时的时间复杂度是怎样的? 
列表是序列,可以理解为数据结构中的数组,字典可以理解为数据结构中的hashmap,python中list对象的存储结构采用的是线性表,因此其查询复杂度为O(n),而dict对象的存储结构采用的是散列表(hash表),其在最优情况下查询复杂度为O(1)。dict的占用内存稍比list大,会在1.5倍左右。

5、递归中如果没有终止条件会怎样?
概念:递归算法是一种直接或者间接的调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的。

特点:

①递归就是在过程或者函数里调用自身。

②在使用递归策略时,必须有一个明确的递归条件,称为递归出口。

③递归算法解题通常显得很简洁,但递归算法解题的效率较低。所以一般不倡导使用递归算法设计程序。

④在递归调用的过程当中系统的每一层的返回点、局部变量等开辟了栈来存储。递归函数次数过多容易造成栈溢出等。 所以一般不倡导用递归算法设计程序

递归如果没有终止条件会导致递归调用成为死循环而不能正常结束,并且会造成栈溢出

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容

  • Swift1> Swift和OC的区别1.1> Swift没有地址/指针的概念1.2> 泛型1.3> 类型严谨 对...
    cosWriter阅读 11,094评论 1 32
  • 1. 是否了解线程的同步和异步? 线程同步:多个线程同时访问同一资源,等待资源访问结束,浪费时间,效率低线程异步:...
    sszhang阅读 495评论 0 7
  • ———————————————回答好下面的足够了---------------------------------...
    恒爱DE问候阅读 1,713评论 0 4
  • iOS面试小贴士 ———————————————回答好下面的足够了------------------------...
    不言不爱阅读 1,970评论 0 7
  • 1 29岁,对女孩子来说,似乎成了一个很重要的分岔路。过的好的,以后的人生路会越来越好走,过的不好的,往后的路只会...
    安梳颜阅读 23,040评论 175 256