iOS开发-Runtime详解(简书)

简介

Runtime 又叫运行时,是一套底层的 C 语言 API,其为 iOS 内部的核心之一,我们平时编写的 OC 代码,底层都是基于它来实现的。比如:

[receiver message];// 底层运行时会被编译器转化为:objc_msgSend(receiver, selector)// 如果其还有参数比如:[receiver message:(id)arg...];// 底层运行时会被编译器转化为:objc_msgSend(receiver, selector, arg1, arg2, ...)

以上你可能看不出它的价值,但是我们需要了解的是 Objective-C 是一门动态语言,它会将一些工作放在代码运行时才处理而并非编译时。也就是说,有很多类和成员变量在我们编译的时是不知道的,而在运行时,我们所编写的代码会转换成完整的确定的代码运行。

因此,编译器是不够的,我们还需要一个运行时系统(Runtime system)来处理编译后的代码。

Runtime 基本是用 C 和汇编写的,由此可见苹果为了动态系统的高效而做出的努力。苹果和 GNU 各自维护一个开源的 Runtime 版本,这两个版本之间都在努力保持一致。

点击这里下载苹果维护的开源代码。

Runtime 的作用

Objc 在三种层面上与 Runtime 系统进行交互:

通过 Objective-C 源代码

通过 Foundation 框架的 NSObject 类定义的方法

通过对 Runtime 库函数的直接调用

Objective-C 源代码

多数情况我们只需要编写 OC 代码即可,Runtime 系统自动在幕后搞定一切,还记得简介中如果我们调用方法,编译器会将 OC 代码转换成运行时代码,在运行时确定数据结构和函数。

通过 Foundation 框架的 NSObject 类定义的方法

Cocoa 程序中绝大部分类都是 NSObject 类的子类,所以都继承了 NSObject 的行为。(NSProxy 类时个例外,它是个抽象超类)

一些情况下,NSObject 类仅仅定义了完成某件事情的模板,并没有提供所需要的代码。例如-description方法,该方法返回类内容的字符串表示,该方法主要用来调试程序。NSObject 类并不知道子类的内容,所以它只是返回类的名字和对象的地址,NSObject 的子类可以重新实现。

还有一些 NSObject 的方法可以从 Runtime 系统中获取信息,允许对象进行自我检查。例如:

-class方法返回对象的类;

-isKindOfClass:和-isMemberOfClass:方法检查对象是否存在于指定的类的继承体系中(是否是其子类或者父类或者当前类的成员变量);

-respondsToSelector:检查对象能否响应指定的消息;

-conformsToProtocol:检查对象是否实现了指定协议类的方法;

-methodForSelector:返回指定方法实现的地址。

通过对 Runtime 库函数的直接调用

Runtime 系统是具有公共接口的动态共享库。头文件存放于/usr/include/objc目录下,这意味着我们使用时只需要引入objc/Runtime.h头文件即可。

许多函数可以让你使用纯 C 代码来实现 Objc 中同样的功能。除非是写一些 Objc 与其他语言的桥接或是底层的 debug

工作,你在写 Objc 代码时一般不会用到这些 C 语言函数。对于公共接口都有哪些,后面会讲到。我将会参考苹果官方的 API 文档。

一些 Runtime 的术语的数据结构

要想全面了解 Runtime 机制,我们必须先了解 Runtime 的一些术语,他们都对应着数据结构。

SEL

它是selector在 Objc 中的表示(Swift 中是 Selector 类)。selector 是方法选择器,其实作用就和名字一样,日常生活中,我们通过人名辨别谁是谁,注意 Objc 在相同的类中不会有命名相同的两个方法。selector 对方法名进行包装,以便找到对应的方法实现。它的数据结构是:

typedefstruct objc_selector *SEL;

我们可以看出它是个映射到方法的 C 字符串,你可以通过 Objc 编译器器命令@selector()或者 Runtime 系统的sel_registerName函数来获取一个SEL类型的方法选择器。

注意:

不同类中相同名字的方法所对应的 selector 是相同的,由于变量的类型不同,所以不会导致它们调用方法实现混乱。

id

id 是一个参数类型,它是指向某个类的实例的指针。定义如下:

typedefstruct objc_object *id;struct objc_object { Class isa; };

以上定义,看到objc_object结构体包含一个 isa 指针,根据 isa 指针就可以找到对象所属的类。

注意:

isa 指针在代码运行时并不总指向实例对象所属的类型,所以不能依靠它来确定类型,要想确定类型还是需要用对象的-class方法。

PS:KVO 的实现机理就是将被观察对象的 isa 指针指向一个中间类而不是真实类型,详见:KVO章节

Class

typedefstruct objc_class *Class;

Class其实是指向objc_class结构体的指针。objc_class的数据结构如下:

struct objc_class {    Class isa  OBJC_ISA_AVAILABILITY;#if !__OBJC2__    Class super_class                                        OBJC2_UNAVAILABLE;constchar *name                                        OBJC2_UNAVAILABLE;long version                                            OBJC2_UNAVAILABLE;long info                                                OBJC2_UNAVAILABLE;long instance_size                                      OBJC2_UNAVAILABLE;struct objc_ivar_list *ivars                            OBJC2_UNAVAILABLE;struct objc_method_list **methodLists                    OBJC2_UNAVAILABLE;struct objc_cache *cache                                OBJC2_UNAVAILABLE;struct objc_protocol_list *protocols                    OBJC2_UNAVAILABLE;#endif} OBJC2_UNAVAILABLE;

从objc_class可以看到,一个运行时类中关联了它的父类指针、类名、成员变量、方法、缓存以及附属的协议。

其中objc_ivar_list和objc_method_list分别是成员变量列表和方法列表:

// 成员变量列表struct objc_ivar_list {int ivar_count                                          OBJC2_UNAVAILABLE;#ifdef __LP64__int space                                                OBJC2_UNAVAILABLE;#endif/* variable length structure */struct objc_ivar ivar_list[1]                            OBJC2_UNAVAILABLE;}                                                            OBJC2_UNAVAILABLE;// 方法列表struct objc_method_list {struct objc_method_list *obsolete                        OBJC2_UNAVAILABLE;int method_count                                        OBJC2_UNAVAILABLE;#ifdef __LP64__int space                                                OBJC2_UNAVAILABLE;#endif/* variable length structure */struct objc_method method_list[1]                        OBJC2_UNAVAILABLE;

}

由此可见,我们可以动态修改*methodList的值来添加成员方法,这也是 Category 实现的原理,同样解释了 Category 不能添加属性的原因。这里可以参考下美团技术团队的文章:深入理解 Objective-C: Category

objc_ivar_list结构体用来存储成员变量的列表,而objc_ivar则是存储了单个成员变量的信息;同理,objc_method_list结构体存储着方法数组的列表,而单个方法的信息则由objc_method结构体存储。

值得注意的时,objc_class中也有一个 isa 指针,这说明 Objc 类本身也是一个对象。为了处理类和对象的关系,Runtime 库创建了一种叫做 Meta Class(元类) 的东西,类对象所属的类就叫做元类。Meta Class 表述了类对象本身所具备的元数据。

我们所熟悉的类方法,就源自于 Meta Class。我们可以理解为类方法就是类对象的实例方法。每个类仅有一个类对象,而每个类对象仅有一个与之相关的元类。

当你发出一个类似[NSObject alloc](类方法)的消息时,实际上,这个消息被发送给了一个类对象(Class Object),这个类对象必须是一个元类的实例,而这个元类同时也是一个根元类(Root Meta Class)的实例。所有元类的 isa 指针最终都指向根元类。

所以当[NSObject alloc]这条消息发送给类对象的时候,运行时代码objc_msgSend()会去它元类中查找能够响应消息的方法实现,如果找到了,就会对这个类对象执行方法调用。


上图实现是super_class指针,虚线时isa指针。而根元类的父类是NSObject,isa指向了自己。而NSObject没有父类。

最后objc_class中还有一个objc_cache,缓存,它的作用很重要,后面会提到。

Method

Method 代表类中某个方法的类型

typedefstruct objc_method *Method;struct objc_method {    SEL method_name                                          OBJC2_UNAVAILABLE;char *method_types                                      OBJC2_UNAVAILABLE;    IMP method_imp                                          OBJC2_UNAVAILABLE;

}

objc_method存储了方法名,方法类型和方法实现:

方法名类型为SEL

方法类型method_types是个 char 指针,存储方法的参数类型和返回值类型

method_imp指向了方法的实现,本质是一个函数指针

Ivar

Ivar是表示成员变量的类型。

typedefstruct objc_ivar *Ivar;struct objc_ivar {char *ivar_name                                          OBJC2_UNAVAILABLE;char *ivar_type                                          OBJC2_UNAVAILABLE;int ivar_offset                                          OBJC2_UNAVAILABLE;#ifdef __LP64__int space                                                OBJC2_UNAVAILABLE;#endif

}

其中ivar_offset是基地址偏移字节

IMP

IMP在objc.h中的定义是:

typedef id(*IMP)(id, SEL, ...);

它就是一个函数指针,这是由编译器生成的。当你发起一个 ObjC 消息之后,最终它会执行的那段代码,就是由这个函数指针指定的。而IMP这个函数指针就指向了这个方法的实现。

如果得到了执行某个实例某个方法的入口,我们就可以绕开消息传递阶段,直接执行方法,这在后面Cache中会提到。

你会发现IMP指向的方法与objc_msgSend函数类型相同,参数都包含id和SEL类型。每个方法名都对应一个SEL类型的方法选择器,而每个实例对象中的SEL对应的方法实现肯定是唯一的,通过一组id和SEL参数就能确定唯一的方法实现地址。

而一个确定的方法也只有唯一的一组id和SEL参数。

Cache

Cache 定义如下:

typedefstruct objc_cache *Cachestruct objc_cache {unsignedint mask/* total = mask + 1 */                OBJC2_UNAVAILABLE;unsignedint occupied                                    OBJC2_UNAVAILABLE;    Method buckets[1]                                        OBJC2_UNAVAILABLE;

};

Cache 为方法调用的性能进行优化,每当实例对象接收到一个消息时,它不会直接在 isa 指针指向的类的方法列表中遍历查找能够响应的方法,因为每次都要查找效率太低了,而是优先在 Cache 中查找。

Runtime 系统会把被调用的方法存到 Cache 中,如果一个方法被调用,那么它有可能今后还会被调用,下次查找的时候就会效率更高。就像计算机组成原理中 CPU 绕过主存先访问 Cache 一样。

Property

typedefstruct objc_property *Property;typedefstruct objc_property *objc_property_t;//这个更常用

可以通过class_copyPropertyList和protocol_copyPropertyList方法获取类和协议中的属性:

objc_property_t *class_copyPropertyList(Class cls,unsignedint *outCount)objc_property_t *protocol_copyPropertyList(Protocol *proto,unsignedint *outCount)

注意:

返回的是属性列表,列表中每个元素都是一个objc_property_t指针

#import@interfacePerson :NSObject/** 姓名 */@property (strong,nonatomic)NSString *name;/** age */@property (assign,nonatomic)int age;/** weight */@property (assign,nonatomic)double weight;@end

以上是一个 Person 类,有3个属性。让我们用上述方法获取类的运行时属性。

unsigned int outCount =0;    objc_property_t *properties = class_copyPropertyList([Person class],&outCount);    NSLog(@"%d", outCount);    for(NSInteger i =0; i < outCount; i++) {        NSString*name = @(property_getName(properties[i]));        NSString *attributes = @(property_getAttributes(properties[i]));        NSLog(@"%@--------%@", name, attributes);

    }

打印结果如下:

2014-11-1011:27:28.473 test[2321:451525]32014-11-1011:27:28.473 test[2321:451525] name--------T@"NSString",&,N,V_name2014-11-1011:27:28.473 test[2321:451525] age--------Ti,N,V_age2014-11-1011:27:28.474 test[2321:451525] weight--------Td,N,V_weight

property_getName用来查找属性的名称,返回 c 字符串。property_getAttributes函数挖掘属性的真实名称和@encode类型,返回 c 字符串。

objc_property_t class_getProperty(Class cls,constchar *name)objc_property_t protocol_getProperty(Protocol *proto,constchar *name,BOOL isRequiredProperty,BOOL isInstanceProperty)

class_getProperty和protocol_getProperty通过给出属性名在类和协议中获得属性的引用。

消息

一些 Runtime 术语讲完了,接下来就要说到消息了。体会苹果官方文档中的 messages aren’t bound to method implementations until Runtime。消息直到运行时才会与方法实现进行绑定。

这里要清楚一点,objc_msgSend方法看清来好像返回了数据,其实objc_msgSend从不返回数据,而是你的方法在运行时实现被调用后才会返回数据。下面详细叙述消息发送的步骤(如下图):


首先检测这个selector是不是要忽略。比如 Mac OS X 开发,有了垃圾回收就不理会 retain,release 这些函数。

检测这个selector的 target 是不是nil,Objc 允许我们对一个 nil 对象执行任何方法不会 Crash,因为运行时会被忽略掉。

如果上面两步都通过了,那么就开始查找这个类的实现IMP,先从 cache 里查找,如果找到了就运行对应的函数去执行相应的代码。

如果 cache 找不到就找类的方法列表中是否有对应的方法。

如果类的方法列表中找不到就到父类的方法列表中查找,一直找到 NSObject 类为止。

如果还找不到,就要开始进入动态方法解析了,后面会提到。

在消息的传递中,编译器会根据情况在objc_msgSend,objc_msgSend_stret,objc_msgSendSuper,objc_msgSendSuper_stret这四个方法中选择一个调用。如果消息是传递给父类,那么会调用名字带有 Super 的函数,如果消息返回值是数据结构而不是简单值时,会调用名字带有 stret 的函数。

方法中的隐藏参数

疑问:

我们经常用到关键字self,但是self是如何获取当前方法的对象呢?

其实,这也是 Runtime 系统的作用,self实在方法运行时被动态传入的。

当objc_msgSend找到方法对应实现时,它将直接调用该方法实现,并将消息中所有参数都传递给方法实现,同时,它还将传递两个隐藏参数:

接受消息的对象(self所指向的内容,当前方法的对象指针)

方法选择器(_cmd指向的内容,当前方法的 SEL 指针)

因为在源代码方法的定义中,我们并没有发现这两个参数的声明。它们时在代码被编译时被插入方法实现中的。尽管这些参数没有被明确声明,在源代码中我们仍然可以引用它们。

这两个参数中,self更实用。它是在方法实现中访问消息接收者对象的实例变量的途径。

这时我们可能会想到另一个关键字super,实际上super关键字接收到消息时,编译器会创建一个objc_super结构体:

struct objc_super { id receiver; Classclass; };

这个结构体指明了消息应该被传递给特定的父类。receiver仍然是self本身,当我们想通过[super class]获取父类时,编译器其实是将指向self的id指针和class的 SEL 传递给了objc_msgSendSuper函数。只有在NSObject类中才能找到class方法,然后class方法底层被转换为object_getClass(), 接着底层编译器将代码转换为objc_msgSend(objc_super->receiver, @selector(class)),传入的第一个参数是指向self的id指针,与调用[self class]相同,所以我们得到的永远都是self的类型。因此你会发现:

// 这句话并不能获取父类的类型,只能获取当前类的类型名NSLog(@"%@",NSStringFromClass([super class]));

获取方法地址

NSObject类中有一个实例方法:methodForSelector,你可以用它来获取某个方法选择器对应的IMP,举个例子:

void (*setter)(id, SEL,BOOL);int i;setter = (void (*)(id, SEL,BOOL))[target    methodForSelector:@selector(setFilled:)];for ( i =0 ; i <1000 ; i++ )    setter(targetList[i],@selector(setFilled:),YES);

当方法被当做函数调用时,两个隐藏参数也必须明确给出,上面的例子调用了1000次函数,你也可以尝试给target发送1000次setFilled:消息会花多久。

虽然可以更高效的调用方法,但是这种做法很少用,除非时需要持续大量重复调用某个方法的情况,才会选择使用以免消息发送泛滥。

注意:

methodForSelector:方法是由 Runtime 系统提供的,而不是 Objc 自身的特性

动态方法解析

你可以动态提供一个方法实现。如果我们使用关键字@dynamic在类的实现文件中修饰一个属性,表明我们会为这个属性动态提供存取方法,编译器不会再默认为我们生成这个属性的 setter 和 getter 方法了,需要我们自己提供。

@dynamic propertyName;

这时,我们可以通过分别重载resolveInstanceMethod:和resolveClassMethod:方法添加实例方法实现和类方法实现。

当 Runtime 系统在 Cache 和类的方法列表(包括父类)中找不到要执行的方法时,Runtime 会调用resolveInstanceMethod:或resolveClassMethod:来给我们一次动态添加方法实现的机会。我们需要用class_addMethod函数完成向特定类添加特定方法实现的操作:

void dynamicMethodIMP(idself, SEL _cmd) {// implementation ....}@implementationMyClass+ (BOOL)resolveInstanceMethod:(SEL)aSEL{if (aSEL ==@selector(resolveThisMethodDynamically)) {          class_addMethod([self class], aSEL, (IMP) dynamicMethodIMP,"v@:");returnYES;    }return [super resolveInstanceMethod:aSEL];}@end

上面的例子为resolveThisMethodDynamically方法添加了实现内容,就是dynamicMethodIMP方法中的代码。其中"v@:"表示返回值和参数,这个符号表示的含义见:Type Encoding

注意:

动态方法解析会在消息转发机制侵入前执行,动态方法解析器将会首先给予提供该方法选择器对应的IMP的机会。如果你想让该方法选择器被传送到转发机制,就让resolveInstanceMethod:方法返回NO。

消息转发


重定向

消息转发机制执行前,Runtime 系统允许我们替换消息的接收者为其他对象。通过- (id)forwardingTargetForSelector:(SEL)aSelector方法。

- (id)forwardingTargetForSelector:(SEL)aSelector{if(aSelector ==@selector(mysteriousMethod:)){return alternateObject;    }return [super forwardingTargetForSelector:aSelector];

}

如果此方法返回nil或者self,则会计入消息转发机制(forwardInvocation:),否则将向返回的对象重新发送消息。

转发

当动态方法解析不做处理返回NO时,则会触发消息转发机制。这时forwardInvocation:方法会被执行,我们可以重写这个方法来自定义我们的转发逻辑:

- (void)forwardInvocation:(NSInvocation *)anInvocation{if ([someOtherObject respondsToSelector:            [anInvocation selector]])        [anInvocation invokeWithTarget:someOtherObject];else        [super forwardInvocation:anInvocation];

}

唯一参数是个NSInvocation类型的对象,该对象封装了原始的消息和消息的参数。我们可以实现forwardInvocation:方法来对不能处理的消息做一些处理。也可以将消息转发给其他对象处理,而不抛出错误。

注意:参数anInvocation 是从哪来的?

在forwardInvocation:消息发送前,Runtime 系统会向对象发送methodSignatureForSelector:消息,并取到返回的方法签名用于生成 NSInvocation 对象。所以重写forwardInvocation:的同时也要重写methodSignatureForSelector:方法,否则会抛异常。

当一个对象由于没有相应的方法实现而无法相应某消息时,运行时系统将通过forwardInvocation:消息通知该对象。每个对象都继承了forwardInvocation:方法。但是,NSObject中的方法实现只是简单的调用了doesNotRecognizeSelector:。通过实现自己的forwardInvocation:方法,我们可以将消息转发给其他对象。

forwardInvocation:方法就是一个不能识别消息的分发中心,将这些不能识别的消息转发给不同的接收对象,或者转发给同一个对象,再或者将消息翻译成另外的消息,亦或者简单的“吃掉”某些消息,因此没有响应也不会报错。这一切都取决于方法的具体实现。

注意:

forwardInvocation:方法只有在消息接收对象中无法正常响应消息时才会被调用。所以,如果我们向往一个对象将一个消息转发给其他对象时,要确保这个对象不能有该消息的所对应的方法。否则,forwardInvocation:将不可能被调用。

转发和多继承

转发和继承相似,可用于为 Objc 编程添加一些多继承的效果。就像下图那样,一个对象把消息转发出去,就好像它把另一个对象中的方法接过来或者“继承”过来一样。


这使得在不同继承体系分支下的两个类可以实现“继承”对方的方法,在上图中Warrior和Diplomat没有继承关系,但是Warrior将negotiate消息转发给了Diplomat后,就好似Diplomat是Warrior的超类一样。

消息转发弥补了 Objc 不支持多继承的性质,也避免了因为多继承导致单个类变得臃肿复杂。

转发与继承

虽然转发可以实现继承的功能,但是NSObject还是必须表面上很严谨,像respondsToSelector:和isKindOfClass:这类方法只会考虑继承体系,不会考虑转发链。

如果上图中的Warrior对象被问到是否能响应negotiate消息:

if ( [aWarrior respondsToSelector:@selector(negotiate)] )

    ...

回答当然是NO, 尽管它能接受negotiate消息而不报错,因为它靠转发消息给Diplomat类响应消息。

如果你就是想要让别人以为Warrior继承到了Diplomat的negotiate方法,你得重新实现respondsToSelector:和isKindOfClass:来加入你的转发算法:

- (BOOL)respondsToSelector:(SEL)aSelector{if ( [super respondsToSelector:aSelector] )returnYES;else {/* Here, test whether the aSelector message can    *        * be forwarded to another object and whether that  *        * object can respond to it. Return YES if it can.  */    }returnNO;

}

除了respondsToSelector:和isKindOfClass:之外,instancesRespondToSelector:中也应该写一份转发算法。如果使用了协议,conformsToProtocol:同样也要加入到这一行列中。

如果一个对象想要转发它接受的任何远程消息,它得给出一个方法标签来返回准确的方法描述methodSignatureForSelector:,这个方法会最终响应被转发的消息。从而生成一个确定的NSInvocation对象描述消息和消息参数。这个方法最终响应被转发的消息。它需要像下面这样实现:

- (NSMethodSignature*)methodSignatureForSelector:(SEL)selector{NSMethodSignature* signature = [super methodSignatureForSelector:selector];if (!signature) {      signature = [surrogate methodSignatureForSelector:selector];    }return signature;

}

健壮的实例变量(Non Fragile ivars)

在 Runtime 的现行版本中,最大的特点就是健壮的实例变量了。当一个类被编译时,实例变量的内存布局就形成了,它表明访问类的实例变量的位置。实例变量一次根据自己所占空间而产生位移:


上图左是NSObject类的实例变量布局。右边是我们写的类的布局。这样子有一个很大的缺陷,就是缺乏拓展性。哪天苹果更新了NSObject类的话,就会出现问题:


我们自定义的类的区域和父类的区域重叠了。只有苹果将父类改为以前的布局才能拯救我们,但这样导致它们不能再拓展它们的框架了,因为成员变量布局被固定住了。在脆弱的实例变量(Fragile

ivar)环境下,需要我们重新编译继承自 Apple 的类来恢复兼容。如果是健壮的实例变量的话,如下图:


在健壮的实例变量下,编译器生成的实例变量布局跟以前一样,但是当 Runtime 系统检测到与父类有部分重叠时它会调整你新添加的实例变量的位移,那样你再子类中新添加的成员变量就被保护起来了。

注意:

在健壮的实例变量下,不要使用siof(SomeClass),而是用class_getInstanceSize([SomeClass class])代替;也不要使用offsetof(SomeClass, SomeIvar),而要使用ivar_getOffset(class_getInstanceVariable([SomeClass class], "SomeIvar"))来代替。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容