Java8新特性第3章(Stream API)

图片来自网络

转载请注明出处:http://www.jianshu.com/p/e3ba9a0b7d72


Stream作为Java8的新特性之一,他与Java IO包中的InputStream和OutputStream完全不是一个概念。Java8中的Stream是对集合功能的一种增强,主要用于对集合对象进行各种非常便利高效的聚合和大批量数据的操作。结合Lambda表达式可以极大的提高开发效率和代码可读性。

假设我们需要把一个集合中的所有形状设置成红色,那么我们可以这样写

for (Shape shape : shapes){
    shape.setColor(RED)
}

如果使用Java8扩展后的集合框架则可以这样写:

shapes.foreach(s -> s.setColor(RED));

第一种写法我们叫外部迭代,for-each调用shapesiterator()依次遍历集合中的元素。这种外部迭代有一些问题:

  • for循环是串行的,而且必须按照集合中元素的顺序依次进行;
  • 集合框架无法对控制流进行优化,例如通过排序、并行、短路求值以及惰性求值改善性能。

上面这两个问题我们会在后面的文章中逐步解答。

第二种写法我们叫内部迭代,两段代码虽然看起来只是语法上的区别,但实际上他们内部的区别其实非常大。用户把对操作的控制权交还给类库,从而允许类库进行各种各样的优化(例如乱序执行、惰性求值和并行等等)。总的来说,内部迭代使得外部迭代中不可能实现的优化成为可能。

外部迭代同时承担了做什么(把形状设为红色)和怎么做(得到Iterator实例然后依次遍历),而内部迭代只负责做什么,而把怎么做留给类库。这样代码会变得更加清晰,而集合类库则可以在内部进行各种优化。

1.什么是Stream

Stream不是集合元素,它也不是数据结构、不能保存数据,它更像一个更高级的Interator。Stream提供了强大的数据集合操作功能,并被深入整合到现有的集合类和其它的JDK类型中。流的操作可以被组合成流水线(Pipeline)。拿前面的例子来说,如果我只想把蓝色改成红色:

shapes.stream()
      .filter(s -> s.getColor() == BLUE)
      .forEach(s -> s.setColor(RED));

Collection上调用stream()会生成该集合元素的流,接下来filter()操作会产生只包含蓝色形状的流,最后,这些蓝色形状会被forEach操作设为红色。

如果我们想把蓝色的形状提取到新的List里,则可以:

List<Shape> blue = shapes.stream()
                          .filter(s -> s.getColor() == BLUE)
                          .collect(Collectors.toList());

collect()操作会把其接收的元素聚集到一起(这里是List),collect()方法的参数则被用来指定如何进行聚集操作。在这里我们使用toList()以把元素输出到List中。

如果每个形状都被保存在Box里,然后我们想知道哪个盒子至少包含一个蓝色形状,我们可以这么写:

Set<Box> hasBlueShape = shapes.stream()
                               .filter(s -> s.getColor() == BLUE)
                              .map(s -> s.getContainingBox())
                              .collect(Collectors.toSet());

map()操作通过映射函数(这里的映射函数接收一个形状,然后返回包含它的盒子)对输入流里面的元素进行依次转换,然后产生新流。

如果我们需要得到蓝色物体的总重量,我们可以这样表达:

int sum = shapes.stream()
                .filter(s -> s.getColor() == BLUE)
                .mapToInt(s -> s.getWeight())
                .sum();

2.Stream vs Collection

流(Stream)和集合(Collection)的区别:

  • Collection主要用来对元素进行管理和访问;
  • Stream并不支持对其元素进行直接操作和直接访问,而只支持通过声明式操作在其之上进行运算后得到结果;
  • Stream不存储值
  • 对Stream的操作会产生一个结果,但是Stream并不会改变数据源;
  • 大多数Stream的操作(filter,map,sort等)都是以惰性的方式实现的。这使得我们可以使用一次遍历完成整个流水线操作,并可以用短路操作提供更高效的实现。

3.惰性求值 vs 急性求值

filter()map()这样的操作既可以被急性求值(以filter()为例,急性求值需要在方法返回前完成对所有元素的过滤),也可以被惰性求值(用Stream代表过滤结果,当且仅当需要时才进行过滤操作)在实际中进行惰性运算可以带来很多好处。比如说,如果我们进行惰性过滤,我们就可以把过滤和流水线里的其它操作混合在一起,从而不需要对数据进行多遍遍历。相类似的,如果我们在一个大型集合里搜索第一个满足某个条件的元素,我们可以在找到后直接停止,而不是继续处理整个集合。(这一点对无限数据源是很重要,惰性求值对于有限数据源起到的是优化作用,但对无限数据源起到的是决定作用,没有惰性求值,对无限数据源的操作将无法终止)

对于filter()map()这样的操作,我们很自然的会把它当成是惰性求值操作,不过它们是否真的是惰性取决于它们的具体实现。另外,像sum()这样生成值的操作和forEach()这样产生副作用的操作都是天然急性求值,因为它们必须要产生具体的结果。

我们拿下面这段代码举例:

int sum = shapes.stream()
                .filter(s -> s.getColor() == BLUE)
                .mapToInt(s -> s.getWeight())
                .sum();

这里的filter()map()都是惰性的,这就意味着在调用sum()之前不会从数据源中提取任何元素。在sum()操作之后才会把filter()map()sum()放在对数据源一次遍历中。这样可以大大减少维持中间结果所带来的开销。

4.举个栗子🌰

前面长篇大论的介绍概念实在太枯燥,为了方便大家理解我们用Streams API来实现一个具体的业务场景。

假设我们有一个房源库项目,这个房源库中有一系列的小区,每个小区都有小区名和房源列表,每套房子又有价格、面积等属性。现在我们需要筛选出含有100平米以上房源的小区,并按照小区名排序。

我们先来看看不用Streams API如何实现:

List<Community> result = new ArrayList<>();
for (Community community : communities) {
        for (House house : community.houses) {
            if (house.area > 100) {
                result.add(community);
                break;
            }
        }
    }
    Collections.sort(result, new Comparator<Community>() {
        @Override
        public int compare(Community c1, Community c2) {
            return c1.name.compareTo(c2.name);
        }
    });
    return result;

如果使用Streams API:

return communities.stream()
                  .filter(c -> c.houses.stream().anyMatch(h -> h.area>100))
                  .sorted(Comparator.comparing(c -> c.name))
                  .collect(Collectors.toList());
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容