小编自己码的通用型函数,支持各种常用视频格式,可满足常用需求,亲测效果和速度都不错。
想获取本文数据和完整代码的下载链接,请关注微信公众号"R语言和Python学堂",并回复发文日期"20181103"。
最近在帮着处理实验上的一些视频,我们知道视频是由一帧一帧图片叠加而制成的。其中第一步就是要把视频中的图片提取出来,怎么做呢?
有人会说,网上应该有很多相关小软件可以做这个事情。仔细一想,大多数软件应该不能满足以后的需求,比如:批量处理视频,提取视频某段时间内的图片,每隔一段时间提取一张图片。。。
Google了一下,发现Python在处理视频方面表现非常优秀,多数都是基于OpenCV库的。为了解决我的需求,因此决定自己写个基于Python+OpenCV的通用函数,来解决以后在提取图片过程中的各种需求。
这个函数就是本文要介绍的video2frames()
函数,功能就是从视频中提取图片,名称“video2frames”是我自己取的,还比较形象。现将它分享给大家,感兴趣的小伙伴们可以参考一下,完整代码附在文末。
1. 主要功能
这个函数有以下主要功能:
提取特定时间点图片,比如:提取视频第3秒, 第5秒,第9秒图片
设定提取的起始时刻,比如:从视频的第10秒开始提取
设定提取的终止时刻,比如:100秒后的视频不提取图片
设定每隔多少秒提取一张图片,比如:每隔2秒从视频中提取一张图片
2. 函数参数
video2frames()
函数的原型为:
video2frames(pathIn='',
pathOut='',
only_output_video_info = False,
extract_time_points = None,
initial_extract_time = 0,
end_extract_time = None,
extract_time_interval = -1,
output_prefix = 'frame',
jpg_quality = 100,
isColor = True)
各参数的意义:
pathIn
:视频的路径,比如:F:\python_tutorials\test.mp4
pathOut
:设定提取的图片保存在哪个文件夹下,比如:F:\python_tutorials\frames\
。如果该文件夹不存在,函数将自动创建它only_output_video_info
:如果为True
,只输出视频信息(长度、帧数和帧率),不提取图片extract_time_points
:提取的时间点,单位为秒,为元组数据,比如,(2, 3, 5)
表示只提取视频第2秒, 第3秒,第5秒图片initial_extract_time
:提取的起始时刻,单位为秒,默认为0
(即从视频最开始提取)end_extract_time
:提取的终止时刻,单位为秒,默认为None
(即视频终点)extract_time_interval
:提取的时间间隔,单位为秒,默认为-1
(即输出时间范围内的所有帧)output_prefix
:图片的前缀名,默认为frame
,那么图片的名称将为frame_000001.jpg
、frame_000002.jpg
、frame_000003.jpg
......jpg_quality
:设置图片质量,范围为0
到100
,默认为100
(质量最佳)isColor
:如果为False
,输出的将是黑白图片
目前只支持输出
jpg
格式图片
3. 例子
下面来测试一下这个函数的功能:
- 设置
only_output_video_info
为True
,将只输出视频信息,不提取图片
>>> pathIn = 'test.mp4'
>>> video2frames(pathIn, only_output_video_info=True)
only output the video information (without extract frames)::::::
Duration of the video: 5.28 seconds
Number of frames: 132
Frames per second (FPS): 25.0
可以看到,视频
test.mp4
的长度为5.28秒,共132帧,帧率为25.0
- 提取所有图片,并保存到指定文件夹下
>>> pathIn = 'test.mp4'
>>> pathOut = './frames1/'
>>> video2frames(pathIn, pathOut)
Converting a video into frames......
Write a new frame: True, 1/132
Write a new frame: True, 2/132
..............................
Write a new frame: True, 131/132
Write a new frame: True, 132/132
可以看到,视频的132帧图片全部提取到
frames1
文件夹下
- 设置
extract_time_points
参数,提取特定时间点的图片
>>> pathIn = 'test.mp4'
>>> pathOut = './frames2'
>>> video2frames(pathIn, pathOut, extract_time_points=(1, 2, 5))
Write a new frame: True, 1th
Write a new frame: True, 2th
Write a new frame: True, 3th
可以看到,只提取了第1秒,第2秒和第5秒图片
- 每隔一段时间提取图片,并设置初始时刻和终止时刻
>>> pathIn = 'test.mp4'
>>> pathOut = './frames3'
>>> video2frames(pathIn, pathOut,
initial_extract_time=1,
end_extract_time=3,
extract_time_interval = 0.5)
Converting a video into frames......
Write a new frame: True, 1th
Write a new frame: True, 2th
Write a new frame: True, 3th
Write a new frame: True, 4th
Write a new frame: True, 5th
可以看到,1到3秒内的视频每隔0.5秒提取图片,共5张图片(分别为1s, 1.5s, 2s, 2.5s, 3s时刻的图片)
- 设置
jpg_quality
参数,改变输出图片的质量
>>> pathOut = './frames4'
>>> pathIn = 'test.mp4'
>>> video2frames(pathIn, pathOut, extract_time_points=(0.3, 2), jpg_quality=50)
Write a new frame: True, 1th
Write a new frame: True, 2th
- 设置
isColor
参数为False
,提取的照片将是黑白色
>>> pathOut = './frames5'
>>> pathIn = 'test.mp4'
>>> video2frames(pathIn, pathOut, extract_time_points=(0.3, 2), isColor=False)
Write a new frame: True, 1th
Write a new frame: True, 2th
video2frames()
函数的功能测试到此结束。
4. 完整代码
函数为通用型的,因此代码较长,可能还存在可以优化的地方,仅供参考。
完整代码如下:
# -*- coding: utf-8 -*-
import os
import cv2 ##加载OpenCV模块
def video2frames(pathIn='',
pathOut='',
only_output_video_info = False,
extract_time_points = None,
initial_extract_time = 0,
end_extract_time = None,
extract_time_interval = -1,
output_prefix = 'frame',
jpg_quality = 100,
isColor = True):
'''
pathIn:视频的路径,比如:F:\python_tutorials\test.mp4
pathOut:设定提取的图片保存在哪个文件夹下,比如:F:\python_tutorials\frames1\。如果该文件夹不存在,函数将自动创建它
only_output_video_info:如果为True,只输出视频信息(长度、帧数和帧率),不提取图片
extract_time_points:提取的时间点,单位为秒,为元组数据,比如,(2, 3, 5)表示只提取视频第2秒, 第3秒,第5秒图片
initial_extract_time:提取的起始时刻,单位为秒,默认为0(即从视频最开始提取)
end_extract_time:提取的终止时刻,单位为秒,默认为None(即视频终点)
extract_time_interval:提取的时间间隔,单位为秒,默认为-1(即输出时间范围内的所有帧)
output_prefix:图片的前缀名,默认为frame,图片的名称将为frame_000001.jpg、frame_000002.jpg、frame_000003.jpg......
jpg_quality:设置图片质量,范围为0到100,默认为100(质量最佳)
isColor:如果为False,输出的将是黑白图片
'''
cap = cv2.VideoCapture(pathIn) ##打开视频文件
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) ##视频的帧数
fps = cap.get(cv2.CAP_PROP_FPS) ##视频的帧率
dur = n_frames/fps ##视频的时间
##如果only_output_video_info=True, 只输出视频信息,不提取图片
if only_output_video_info:
print('only output the video information (without extract frames)::::::')
print("Duration of the video: {} seconds".format(dur))
print("Number of frames: {}".format(n_frames))
print("Frames per second (FPS): {}".format(fps))
##提取特定时间点图片
elif extract_time_points is not None:
if max(extract_time_points) > dur: ##判断时间点是否符合要求
raise NameError('the max time point is larger than the video duration....')
try:
os.mkdir(pathOut)
except OSError:
pass
success = True
count = 0
while success and count < len(extract_time_points):
cap.set(cv2.CAP_PROP_POS_MSEC, (1000*extract_time_points[count]))
success,image = cap.read()
if success:
if not isColor:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ##转化为黑白图片
print('Write a new frame: {}, {}th'.format(success, count+1))
cv2.imwrite(os.path.join(pathOut, "{}_{:06d}.jpg".format(output_prefix, count+1)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality]) # save frame as JPEG file
count = count + 1
else:
##判断起始时间、终止时间参数是否符合要求
if initial_extract_time > dur:
raise NameError('initial extract time is larger than the video duration....')
if end_extract_time is not None:
if end_extract_time > dur:
raise NameError('end extract time is larger than the video duration....')
if initial_extract_time > end_extract_time:
raise NameError('end extract time is less than the initial extract time....')
##时间范围内的每帧图片都输出
if extract_time_interval == -1:
if initial_extract_time > 0:
cap.set(cv2.CAP_PROP_POS_MSEC, (1000*initial_extract_time))
try:
os.mkdir(pathOut)
except OSError:
pass
print('Converting a video into frames......')
if end_extract_time is not None:
N = (end_extract_time - initial_extract_time)*fps + 1
success = True
count = 0
while success and count < N:
success,image = cap.read()
if success:
if not isColor:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print('Write a new frame: {}, {}/{}'.format(success, count+1, n_frames))
cv2.imwrite(os.path.join(pathOut, "{}_{:06d}.jpg".format(output_prefix, count+1)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality]) # save frame as JPEG file
count = count + 1
else:
success = True
count = 0
while success:
success,image = cap.read()
if success:
if not isColor:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print('Write a new frame: {}, {}/{}'.format(success, count+1, n_frames))
cv2.imwrite(os.path.join(pathOut, "{}_{:06d}.jpg".format(output_prefix, count+1)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality]) # save frame as JPEG file
count = count + 1
##判断提取时间间隔设置是否符合要求
elif extract_time_interval > 0 and extract_time_interval < 1/fps:
raise NameError('extract_time_interval is less than the frame time interval....')
elif extract_time_interval > (n_frames/fps):
raise NameError('extract_time_interval is larger than the duration of the video....')
##时间范围内每隔一段时间输出一张图片
else:
try:
os.mkdir(pathOut)
except OSError:
pass
print('Converting a video into frames......')
if end_extract_time is not None:
N = (end_extract_time - initial_extract_time)/extract_time_interval + 1
success = True
count = 0
while success and count < N:
cap.set(cv2.CAP_PROP_POS_MSEC, (1000*initial_extract_time+count*1000*extract_time_interval))
success,image = cap.read()
if success:
if not isColor:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print('Write a new frame: {}, {}th'.format(success, count+1))
cv2.imwrite(os.path.join(pathOut, "{}_{:06d}.jpg".format(output_prefix, count+1)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality]) # save frame as JPEG file
count = count + 1
else:
success = True
count = 0
while success:
cap.set(cv2.CAP_PROP_POS_MSEC, (1000*initial_extract_time+count*1000*extract_time_interval))
success,image = cap.read()
if success:
if not isColor:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print('Write a new frame: {}, {}th'.format(success, count+1))
cv2.imwrite(os.path.join(pathOut, "{}_{:06d}.jpg".format(output_prefix, count+1)), image, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality]) # save frame as JPEG file
count = count + 1
##### 测试
pathIn = 'test.mp4'
video2frames(pathIn, only_output_video_info = True)
pathOut = './frames1/'
video2frames(pathIn, pathOut)
pathOut = './frames2'
video2frames(pathIn, pathOut, extract_time_points=(1, 2, 5))
pathOut = './frames3'
video2frames(pathIn, pathOut,
initial_extract_time=1,
end_extract_time=3,
extract_time_interval = 0.5)
pathOut = './frames4/'
video2frames(pathIn, pathOut, extract_time_points=(0.3, 2), isColor = False)
pathOut = './frames5/'
video2frames(pathIn, pathOut, extract_time_points=(0.3, 2), jpg_quality=50)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持本公众号。
感谢您的阅读!想了解更多有关Python技巧,请关注我的微信公众号“R语言和Python学堂”,我将定期更新相关文章。