Hi-C技术的初步了解

最近的一次组会上看到实验室的同学汇报的结果里有Hi-C的图,所以我就悄咪咪的去了解了一下Hi-C技术的原理。整理一下。

Q1: Hi-C的全称是什么?

A: 高通量染色体构象捕获技术(High-throughput chromosome conformation capture)

Q2: 简单的说,Hi-C技术是干嘛的?

A: Hi-C 是以整个细胞核为研究对象,利用高通量测序技术,研究全基因组范围内整个染色质 DNA 在空间位置上的关系,捕获不同基因座位上之间的空间交互信息。Hi-C 可以与 RNA-Seq、ChIP-Seq 等数据进行联合分析,从基因调控网络和表观遗传网络来阐述生物体性状形成的相关机制。(参考文章:Hi-C 技术, Hi-C技术到底能做什么?

Q3: Hi-C的实验流程是什么?

A: 可以参考哈佛大学录制的视频,20多分钟,里面介绍了详细的实验流程。这个视频的好处是还可以选择播放速度,英文不太好的童鞋也不用担心,让它慢一点播放就行了。点这里:Hi-C: A Method to Study the Three-dimensional Architecture of Genomes.

一般流程:
(1)细胞(2 x 10^ 7至2.5 x 10 ^7)用甲醛交联,如此一来,在空间上相互作用的染色质片段之间产生共价键(上图中DNA片段:蓝色,红色。中间的环状的是protein)。
(2)染色质用限制酶(此处为HindIII;限制位点:虚线)消化。产生的粘性末端被核苷酸填充一部分,并且被标记生物素(紫色点)。这里需要注意的是,你需要有一个空白对照,即没有HindIII处理的样品,因为你需要跑胶检查你的酶切结果。
(3)连接:是在极稀的条件下进行的,有利于分子内连接。这时HindIII酶切位点就没了,多出了一个NheI位点。再进行酶切。
NOTE:这里要进行质量检测:

上图里,A图是分别用不同量的3C和Hi-C文库跑的胶。一般来说Hi-C文库的连接效率要比3C稍微低一些,所以会有一些弥散的感觉。质量控制步骤应显示3C和Hi-C库均大于10 kb。DNA条带弥散表明连接效率差。B图里分别是不同的对照和进行两次酶切的DNA胶结果图。NheI切割了70%的Hi-C扩增子。
(4)纯化和剪切DNA。
(5)使用链霉亲和素珠分离生物素标记的片段。然后进行测序。

Q4: 如何知道Hi-C测序的质量如何?

A: 上图A中,与随机产生的read(绿色)相比,染色体内(蓝色)和染色体间(红色)相互作用的片段的reads明显更接近HindIII限制性酶切位点。随着距HindIII位点的距离增加,染色体内读数和染色体间读数曲线都迅速减小,直到染色体在〜500 bp处达到平稳为止。500bp是用于测序的最大片段大小。图B说的是,通常,55%的可比对的reads 对代表染色体间相互作用。15%表示间隔小于20 kb的染色体内片段之间的相互作用,而30%的reads表示间隔大于20 kb的染色体内的相互作用。这种分布可以作为质量控制的一种形式。

Q5: Hi-C数据的分析流程是什么?

参考:生信技能树:3D基因组之Hi-C数据分析(大全)三维基因组学研究之Hi-C

(1)数据过滤。
(2)比对:比对的方式主要分两种,一种判断每条reads是否含有酶切位点,有则去掉酶切位点之后的数据在进行bowtie2单端比对;另一种采用单端比对的策略,以25bp为起始长度,每次增加5bp直到该reads比对到基因组具有唯一性。
(3)寻找酶切片段;比对寻找到reads pairs在基因组物理位置之后,通过插入片段大小的限制搜索reads pairs两端每条read所对应的最近的酶切片段。酶切片段的位置代表了DNA交互产生的大致位置。
(4)筛选fragment pairs
(5)HiC分析:只需要Valid Pairs
Binning:将Valid Pairs的交互信息mapping到基因组的位置,最终转换成为每两个bin的交互强度。
(6)交互矩阵标准化;标准化方法主要分为两类,一类是基于矩阵,进行数学上的标准化,例如迭代等,另一类是基于生物学意义(例如mappingability)上的标准化。
(7)可视化

Q6: Hi-C测序的结果图怎么看?

A: 染色质相互作用可以用热图表示,其中x轴和y轴代表基因组顺序的基因座。通常来说,线性基因组中非常接近的DNA片段将倾向于相互频繁交互。所以在热图中可以看到对角线的相互作用很高(下图)。下图展示的是14号染色体内的基因座相互作用:

上面图A对应于14号染色体上染色体内相互作用的热图。每个像素代表1-Mb位点和另一个1-Mb位点之间的所有相互作用。红色密度对应于reads的数量。刻度线每个刻度10 Mb。使用Hi-C数据集计算给定基因组内一对基因座(loci)的平均接触概率,产生一个期望矩阵(B)。matrix A和B两个矩阵的商是观察/期望的矩阵(C),其中富集显示为红色。块模式变得更加明显。Person相关矩阵(D)说明了14染色体的每对基因座的相互作用相关性。

你还可以看染色体之间的相互作用:

上图A中,相互作用的概率随着染色体1上基因距离的变化而降低,最终在90Mb达到平稳(蓝色线)。不同染色体间相互作用的水平对于不同的染色体对是不同的。1号染色体上的基因座最有可能与10号染色体上的基因座(绿色)相互作用,最不可能与21号染色体上的基因座(红色)相互作用。相对于染色体内相互作用,染色体间的相互作用被消除了。图B里所有染色体之间的观察/预期热图。红色表示富集。一般富含基因的小染色体往往存在更多的相互作用。

Q7: TAD图怎么看?

我在实验室人的汇报里看到类似如下的图:

参考:TAD:拓扑关联结构域简介
这其实是染色质相互作用图里对角线一侧的数据。这种重复出现的(红色三角)内部互作频率高,组间互作频率低的domain,称为topologically assocaited domain, 简称TAD。这个图怎么理解呢,我发现了生信修炼手册公众号里的一张图片,非常简单易懂:

两个大红三角的中间被称为:TAD边界。

那么如何识别染色质中的TAD,这里有一个名词:DI,方向性指数。用于量化基因组区域的上游或下游相互作用偏差的程度,发现在TAD边界区的偏差很大。(参考:3D基因组入门笔记

TAD与Chip-Seq结果一起看(图片来自:3D基因组入门笔记):

TAD图和Chip-seq一起看,可以看在TAD边界处或内部,不同的protein或者染色质修饰mark的结合情况。比如上面这个图,CTCF可以帮助染色体折叠,那么它结合的地方,显然是很难与其他地方相互作用的,所以与绝缘子相关。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342