聊一聊锁

1、公平锁、非公平锁

  1. 是什么

    公平锁就是先来后到、非公平锁就是允许加塞,Lock lock = new ReentrantLock(Boolean fair); 默认非公平。

    • ==公平锁==是指多个线程按照申请锁的顺序来获取锁,类似排队打饭。

    • ==非公平锁==是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程优先获取锁,在高并发的情况下,有可能会造成优先级反转或者节现象。

  2. 两者区别

    • 公平锁:Threads acquire a fair lock in the order in which they requested it

      公平锁,就是很公平,在并发环境中,每个线程在获取锁时,会先查看此锁维护的等待队列,如果为空,或者当前线程就是等待队列的第一个,就占有锁,否则就会加入到等待队列中,以后会按照FIFO的规则从队列中取到自己。

    • 非公平锁:a nonfair lock permits barging: threads requesting a lock can jump ahead of the queue of waiting threads if the lock happens to be available when it is requested.

      非公平锁比较粗鲁,上来就直接尝试占有额,如果尝试失败,就再采用类似公平锁那种方式。

2、可重入锁(递归锁)

  1. 递归锁是什么

    指的时同一线程外层函数获得锁之后,内层递归函数仍然能获取该锁的代码,在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁,也就是说,线程可以进入任何一个它已经拥有的锁所同步着的代码块

  2. ReentrantLock/Synchronized 就是一个典型的可重入锁

  3. 可重入锁最大的作用是避免死锁

  4. 代码示例

    package com.jian8.juc.lock;
    
    ####
        public static void main(String[] args) {
            Phone phone = new Phone();
            new Thread(() -> {
                try {
                    phone.sendSMS();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }, "Thread 1").start();
            new Thread(() -> {
                try {
                    phone.sendSMS();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }, "Thread 2").start();
        }
    }
    class Phone{
        public synchronized void sendSMS()throws Exception{
            System.out.println(Thread.currentThread().getName()+"\t -----invoked sendSMS()");
            Thread.sleep(3000);
            sendEmail();
        }
    
        public synchronized void sendEmail() throws Exception{
            System.out.println(Thread.currentThread().getName()+"\t +++++invoked sendEmail()");
        }
    }
    
    package com.jian8.juc.lock;
    
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class ReentrantLockDemo {
        public static void main(String[] args) {
            Mobile mobile = new Mobile();
            new Thread(mobile).start();
            new Thread(mobile).start();
        }
    }
    class Mobile implements Runnable{
        Lock lock = new ReentrantLock();
        @Override
        public void run() {
            get();
        }
    
        public void get() {
            lock.lock();
            try {
                System.out.println(Thread.currentThread().getName()+"\t invoked get()");
                set();
            }finally {
                lock.unlock();
            }
        }
        public void set(){
            lock.lock();
            try{
                System.out.println(Thread.currentThread().getName()+"\t invoked set()");
            }finally {
                lock.unlock();
            }
        }
    }
    
    

3、独占锁(写锁)/共享锁(读锁)/互斥锁

  1. 概念

    • 独占锁:指该锁一次只能被一个线程所持有,对ReentrantLock和Synchronized而言都是独占锁

    • 共享锁:只该锁可被多个线程所持有

      ReentrantReadWriteLock其读锁是共享锁,写锁是独占锁

    • 互斥锁:读锁的共享锁可以保证并发读是非常高效的,读写、写读、写写的过程是互斥的

  2. 代码示例

    package com.jian8.juc.lock;
    
    import java.util.HashMap;
    import java.util.Map;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantReadWriteLock;
    
    /**
     * 多个线程同时读一个资源类没有任何问题,所以为了满足并发量,读取共享资源应该可以同时进行。
     * 但是
     * 如果有一个线程象取写共享资源来,就不应该自由其他线程可以对资源进行读或写
     * 总结
     * 读读能共存
     * 读写不能共存
     * 写写不能共存
     */
    public class ReadWriteLockDemo {
        public static void main(String[] args) {
            MyCache myCache = new MyCache();
            for (int i = 1; i <= 5; i++) {
                final int tempInt = i;
                new Thread(() -> {
                    myCache.put(tempInt + "", tempInt + "");
                }, "Thread " + i).start();
            }
            for (int i = 1; i <= 5; i++) {
                final int tempInt = i;
                new Thread(() -> {
                    myCache.get(tempInt + "");
                }, "Thread " + i).start();
            }
        }
    }
    
    class MyCache {
        private volatile Map<String, Object> map = new HashMap<>();
        private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
    
        /**
         * 写操作:原子+独占
         * 整个过程必须是一个完整的统一体,中间不许被分割,不许被打断
         *
         * @param key
         * @param value
         */
        public void put(String key, Object value) {
            rwLock.writeLock().lock();
            try {
                System.out.println(Thread.currentThread().getName() + "\t正在写入:" + key);
                TimeUnit.MILLISECONDS.sleep(300);
                map.put(key, value);
                System.out.println(Thread.currentThread().getName() + "\t写入完成");
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                rwLock.writeLock().unlock();
            }
    
        }
    
        public void get(String key) {
            rwLock.readLock().lock();
            try {
                System.out.println(Thread.currentThread().getName() + "\t正在读取:" + key);
                TimeUnit.MILLISECONDS.sleep(300);
                Object result = map.get(key);
                System.out.println(Thread.currentThread().getName() + "\t读取完成: " + result);
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                rwLock.readLock().unlock();
            }
    
        }
    
        public void clear() {
            map.clear();
        }
    }
    

4、自旋锁

  1. spinlock

    是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU

        public final int getAndAddInt(Object var1, long var2, int var4) {
            int var5;
            do {
                var5 = this.getIntVolatile(var1, var2);
            } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
            return var5;
        }
    

    手写自旋锁:

    package com.jian8.juc.lock;
    
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicReference;
    
    /**
     * 实现自旋锁
     * 自旋锁好处,循环比较获取知道成功位置,没有类似wait的阻塞
     *
     * 通过CAS操作完成自旋锁,A线程先进来调用mylock方法自己持有锁5秒钟,B随后进来发现当前有线程持有锁,不是null,所以只能通过自旋等待,知道A释放锁后B随后抢到
     */
    public class SpinLockDemo {
        public static void main(String[] args) {
            SpinLockDemo spinLockDemo = new SpinLockDemo();
            new Thread(() -> {
                spinLockDemo.mylock();
                try {
                    TimeUnit.SECONDS.sleep(3);
                }catch (Exception e){
                    e.printStackTrace();
                }
                spinLockDemo.myUnlock();
            }, "Thread 1").start();
    
            try {
                TimeUnit.SECONDS.sleep(3);
            }catch (Exception e){
                e.printStackTrace();
            }
    
            new Thread(() -> {
                spinLockDemo.mylock();
                spinLockDemo.myUnlock();
            }, "Thread 2").start();
        }
    
        //原子引用线程
        AtomicReference<Thread> atomicReference = new AtomicReference<>();
    
        public void mylock() {
            Thread thread = Thread.currentThread();
            System.out.println(Thread.currentThread().getName() + "\t come in");
            while (!atomicReference.compareAndSet(null, thread)) {
    
            }
        }
    
        public void myUnlock() {
            Thread thread = Thread.currentThread();
            atomicReference.compareAndSet(thread, null);
            System.out.println(Thread.currentThread().getName()+"\t invoked myunlock()");
        }
    }
    

锁升级

偏向锁--》轻量级锁 (自旋锁) --》重量级锁

锁优化

锁粗化

锁消除
适应性自旋:适应性自旋,线程如果自旋成功了,则下次自旋的次数会更多,如果自旋失败了,则自旋的次数就会减少。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容