六.kafka Streams

6.1 概述

6.1.1 Kafka Streams

Kafka Streams。Apache Kafka开源项目的一个组成部分。是一个功能强大,易于使用的库。用于在Kafka上构建高可分布式、拓展性,容错的应用程序。

6.1.2 Kafka Streams特点

1)功能强大

高扩展性,弹性,容错

2)轻量级

无需专门的集群

一个库,而不是框架

3)完全集成

100%的Kafka 0.10.0版本兼容

易于集成到现有的应用程序

4)实时性

毫秒级延迟

并非微批处理

窗口允许乱序数据

允许迟到数据

6.1.3 为什么要有Kafka Stream

当前已经有非常多的流式处理系统,最知名且应用最多的开源流式处理系统有Spark Streaming和Apache Storm。Apache Storm发展多年,应用广泛,提供记录级别的处理能力,当前也支持SQL on Stream。而Spark Streaming基于Apache Spark,可以非常方便与图计算,SQL处理等集成,功能强大,对于熟悉其它Spark应用开发的用户而言使用门槛低。另外,目前主流的Hadoop发行版,如Cloudera和Hortonworks,都集成了Apache Storm和Apache Spark,使得部署更容易。既然Apache Spark与Apache Storm拥用如此多的优势,那为何还需要Kafka Stream呢?主要有如下原因。

第一,Spark和Storm都是流式处理框架,而Kafka Stream提供的是一个基于Kafka的流式处理类库。框架要求开发者按照特定的方式去开发逻辑部分,供框架调用。开发者很难了解框架的具体运行方式,从而使得调试成本高,并且使用受限。而Kafka Stream作为流式处理类库,直接提供具体的类给开发者调用,整个应用的运行方式主要由开发者控制,方便使用和调试

第二,虽然Cloudera与Hortonworks方便了Storm和Spark的部署,但是这些框架的部署仍然相对复杂。而Kafka Stream作为类库,可以非常方便的嵌入应用程序中,它对应用的打包和部署基本没有任何要求。

第三,就流式处理系统而言,基本都支持Kafka作为数据源。例如Storm具有专门的kafka-spout,而Spark也提供专门的spark-streaming-kafka模块。事实上,Kafka基本上是主流的流式处理系统的标准数据源。换言之,大部分流式系统中都已部署了Kafka,此时使用Kafka Stream的成本非常低。

第四,使用Storm或Spark Streaming时,需要为框架本身的进程预留资源,如Storm的supervisor和Spark on YARN的node manager。即使对于应用实例而言,框架本身也会占用部分资源,如SparkStreaming需要为shufflfflffle和storage预留内存。但是Kafka作为类库不占用系统资源。

第五,由于Kafka本身提供数据持久化,因此Kafka Stream提供滚动部署和滚动升级以及重新计算的能力。

第六,由于Kafka Consumer Rebalance机制,Kafka Stream可以在线动态调整并行度。

6.2 Kafka Stream数据清洗案例

0)需求:

实时处理单词带有”>>>”前缀的内容。例如输入”itstar>>>ximenqing”,最终处理成“ximenqing”

1)需求分析:

2)案例实操

(1)创建一个工程,并添加jar包

(2)创建主类

package com.itstar.kafka.stream;

import java.util.Properties;

import org.apache.kafka.streams.KafkaStreams;

import org.apache.kafka.streams.StreamsConfig;

import org.apache.kafka.streams.processor.Processor;

import org.apache.kafka.streams.processor.ProcessorSupplier;

import org.apache.kafka.streams.processor.TopologyBuilder;

public class Application {

public static void main(String[] args) {

// 定义输入的topic

String from = "first";

// 定义输出的topic

String to = "second";

// 设置参数

Properties settings = new Properties();

settings.put(StreamsConfig.APPLICATION_ID_CONFIG, "logFilter");

settings.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "bigdata11:9092");

StreamsConfig config = new StreamsConfig(settings);

// 构建拓扑

TopologyBuilder builder = new TopologyBuilder();

builder.addSource("SOURCE", from)

.addProcessor("PROCESS", new ProcessorSupplier<byte[], byte[]>()

{

@Override

public Processor<byte[], byte[]> get() {

// 具体分析处理

return new LogProcessor();

}

}, "SOURCE")

.addSink("SINK", to, "PROCESS");

// 创建kafka stream

KafkaStreams streams = new KafkaStreams(builder, config);

streams.start();

}

}

(3)具体业务处理

package com.itstar.kafka.stream;

import org.apache.kafka.streams.processor.Processor;

import org.apache.kafka.streams.processor.ProcessorContext;

public class LogProcessor implements Processor<byte[], byte[]> {

private ProcessorContext context;

@Override

public void init(ProcessorContext context) {

this.context = context;

}

@Override

public void process(byte[] key, byte[] value) {

String input = new String(value);

// 如果包含“>>>”则只保留该标记后面的内容

if (input.contains(">>>")) {

input = input.split(">>>")[1].trim();

// 输出到下一个topic

context.forward("logProcessor".getBytes(), input.getBytes());

}else{

context.forward("logProcessor".getBytes(), input.getBytes());

}

}

@Override

public void punctuate(long timestamp) {

}

@Override

public void close() {

}

}

(4)运行程序

(5)在bigdata13上启动生产者

[itstar@bigdata13 kafka]$ bin/kafka-console-producer.sh --broker-list

bigdata11:9092 --topic first

>hello>>>world

>h>>>itstar

>hahaha

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容