三角形中的欧拉定理

三角形中的欧拉定理是指:

三角形的外心与内心之间的距离 d 与外接圆 半径 R 和内切圆半径 r 之间有如下关系
d^2=R(R-2r)

这个定理我在中学时见过,可是并不会证明,还记得有那个「欧拉线」吧,感觉自己也证明不来,就没有去理会这个问题了。

今天善科题库发了 一条微博 就是关于这个的,倒是想让我去读一读是怎么证明的。

证明:

我参考的证明来自 Euler Triangle Formula - ProofWiki ,示意图如下:

欧拉定理

在图中外接圆半径为 R ,内切圆半径为 r ,两圆心距离 IO = d
由相交弦定理得 GI \cdot IJ = IP \cdot CI

\angle PIB = \angle ICB + \angle CBI = \dfrac{1}{2} \angle ACB + \dfrac{1}{2} \angle ABC \,
AP 所对的两个圆周角相等,所以 \angle ABP = \angle ACP = \dfrac{1}{2} \angle ACB
所以 \angle PBI = \angle IBA + \angle ABP = \dfrac{1}{2} \angle ABC + \dfrac{1}{2} \angle ACB \
所以 \angle PIB = \angle PBI,得到 PI = PB

所以前面得到的等式变成了 GI \cdot IJ = PB \cdot CI
这里 GI = R-d,\,IJ = R+d,它们相乘等于 R^2-d^2 ,对比要证明的等式得知我们接下来要说明 PB \cdot CI = 2Rr

利用一些三角函数的知识进行转换,由正弦定理知道 \dfrac{PB}{ \sin \angle PCB} = 2R ,即 PB = 2R \sin \angle PCB
\text{Rt} \triangle ICF 中有 CI = \dfrac{IF}{\sin \angle ICF} = \dfrac{r}{\sin \angle PCB}
所以 PB \cdot CI = 2Rr
所以 R^2-d^2 = 2Rr
这就得到了我们要证明的 d^2=R(R-2r)


以前经常做几何题的时光还是在初中,一晃已经有十年之久,这十年我有什么变化吗,下一个十年我在哪呢?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容