基于AIE平台的决策树算法的黔东南州水稻提取

决策树模型实现黔东南州水稻提取

依据作物在不同物候期内卫星影像的光谱存在差异的特征和地形因子,可建立水稻提取算法,进行水稻提取。

初始化环境

import aie

aie.Authenticate()
aie.Initialize()

指定需要检索的区域

feature_collection = aie.FeatureCollection('China_City') \
                        .filter(aie.Filter.eq('city', '黔东南苗族侗族自治州'))
region = feature_collection.geometry()

DEM处理


# 指定检索数据集,可设置检索的空间范围
elevation = aie.ImageCollection('JAXA_ALOS_AW3D30_V3_2') \
             .filterBounds(region)\
             .select(['DSM'])\
             .mosaic()\
             .clip(region)



map = aie.Map(
    center=feature_collection.getCenter(),
    height=800,
    zoom=7
)
vis_params = {
    'bands': 'DSM',
    'min': 100,
    'max': 2200,
    'palette': [
        '#0000ff', '#00ffff', '#ffff00', '#ff0000', '#ffffff'
    ]
}
map.addLayer(
    elevation,
    vis_params,
    'Elevation',
    bounds=elevation.getBounds()
)
map
黔东南州高程分布图
task = aie.Export.image.toAsset(elevation,'dem_qdn',30)
task.start()
## 坡度,下载aie还不能计算,我这里使用ArcGIS运算

slope = aie.Image('user/c7ec068793e54fccb9ba8692ed9d0b91').clip(region)


vis_params = {
    'min': 0,
    'max': 80,
    'palette': [
        '#0000ff', '#00ffff', '#ffff00', '#ff0000', '#ffffff'
    ]
}
map.addLayer(
    slope,
    vis_params,
    'slope',
    bounds=slope.getBounds()
)
map
黔东南州坡度分布图

这里说一下,我的谷歌浏览器上传影像数据,不知道为什么失败,我是用edge浏览器上传的,我把我的谷歌浏览器版本上传给了官方。

Landsat 8 数据处理

# 插秧期影像

# 指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件(如云量过滤等)
img1 = aie.ImageCollection('LANDSAT_LC08_C02_T1_L2') \
             .filterBounds(region) \
             .filterDate('2021-4-01', '2021-6-10') \
             .filter(aie.Filter.lte('eo:cloud_cover', 20.0))\
             .median()\
             .clip(region)
# print(img1.size().getInfo())

vis_params = {
    'bands': ['SR_B4', 'SR_B3', 'SR_B2'],
    'min': 8000,
    'max': 13000,
}
map.addLayer(
    img1,
    vis_params,
    'img1',
    bounds=img1.getBounds()
)
map
# 生长期影像


img2 = aie.ImageCollection('LANDSAT_LC08_C02_T1_L2') \
             .filterBounds(region) \
             .filterDate('2021-6-20', '2021-8-30') \
             .filter(aie.Filter.lte('eo:cloud_cover', 45.0))\


print(img2.size().getInfo())

img2 = img2.median().clip(region)


vis_params = {
    'bands': ['SR_B4', 'SR_B3', 'SR_B2'],
    'min': 8000,
    'max': 13000,
}
map.addLayer(
    img2,
    vis_params,
    'img2',
    bounds=img2.getBounds()
)
map

NDVI 计算

# NDVI扩大10,好比较
NDVI1 = img1.normalizedDifference(['SR_B5', 'SR_B4'])\
            .multiply(aie.Image.constant(10)).rename(['NDVI'])
NDVI2 = img2.normalizedDifference(['SR_B5', 'SR_B4'])\
            .multiply(aie.Image.constant(10)).rename(['NDVI'])
NDVI_diff = NDVI2.subtract(NDVI1).rename(['Diff'])
import numpy as np

scale = 1000

histogram = NDVI1.reduceRegion(aie.Reducer.histogram(2000), None, scale)
histogram_info = histogram.getInfo()
# print(histogram_info)


bucketKey = histogram_info['NDVI_range']
bucketValue = histogram_info['NDVI_counts']

key = np.array(bucketValue)
accSum = np.cumsum(key)
# print(accSum[20])
# print(accSum[-1])
accPercent = accSum / accSum[-1]
    
p2 = np.searchsorted(accPercent, 0.2)

min_ndvi = bucketKey[p2 + 1]
print('min_ndvi1:%f' % min_ndvi)

p98 = np.searchsorted(accPercent, 0.98)
max_ndvi = bucketKey[p98]
print('max_ndvi1:%f' % max_ndvi)
查看NDVI

提取规则

# 水稻提取规则集

## 水稻一般生长在海拔900m以下,坡度在20度以下
mask1 = elevation.lt(aie.Image.constant(900)).clip(region) 
mask2 = slope.lt(aie.Image.constant(20)).clip(region) 

## 水稻播种期NDVI一般在0.32至0.38,每个地方可能有差异
mask3 = NDVI1.gt(aie.Image.constant(3.2)).And(NDVI1.lt(aie.Image.constant(3.8)))

## 水稻生长期NDVI和播种期NDVI一般在-0.9至0.6,每个地方可能有差异
mask4 = NDVI_diff.gt(aie.Image.constant(-0.9)).And(NDVI_diff.lt(aie.Image.constant(0.6)))
rice = mask1.And(mask2).And(mask3).And(mask4)
mask_vis  = {
    'min': 0,
    'max': 1,
    'palette': ['#ffffff', '#008000']    # 0:白色, 1:绿色
}



map.addLayer(rice,mask_vis, 'wheat', bounds=region.getBounds())    # 绿色区域为水稻

水稻提取结果
task = aie.Export.image.toAsset(rice,'rice_extract',30)
task.start()

精度评价

这一部分在ArcGIS和Excel里面完成,查找统计年鉴可知黔东南州水稻种植面积S1=233 万亩,提取出来的面积S2= 252万亩,提取下来结果如表所示,总的来说还是比较粗糙,希望大家有更好的算法。
总体误差= \frac{\left | S2-S1 \right |}{S1} = \frac{\left | 252-233 \right |}{233}=8.1\%

模型构建器

提取结果
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容