本次笔记主要是记录通过SQL计算电商各项指标数据,包括AARRR部分指标、RFM模型等常用的指标数据;
平台指标:
- PV、UV、浏览深度(PV/UV);
- 跳失率;
- 购买转化率;
商品指标:
- 商品购买转化率;
- 商品品类购买转化率;
用户行为指标:
- 每时段的浏览量;
- 用户复购情况;
- 用户购买路径;
RFM模型:见之前的文章《SQL建立RFM模型指标的两种方法对比》
用户留存率:见之前文章《SQL 查询用户留存率(根据两种不同定义计算)》
数据清洗
首先我们导入相关数据,并去重数据放进新表 temp_trade;
由于时间关系,以导入如下数据,期间利用
SET date_time = STR_TO_DATE(time,'%Y-%m-%d %H');
set dates=date(date_time);
这两个函数对原表(红框)日期进行处理;
create table o_retailers_trade_user
(
user_id int (9),
item_id int (9), -- 商品id
behavior_type int (1), -- 用户行为类型(1-曝光;2-购买;3-加入购物⻋;4-加入收藏夹。)
user_geohash varchar (14),
item_category int (5), -- 品类ID
time varchar (13) -- 用户发生行为的时间
);
-- 日期时间数据处理 增加新列date_time、dates
ALTER TABLE o_retailers_trade_user
ADD COLUMN date_time datetime null;
UPDATE o_retailers_trade_user
SET date_time = STR_TO_DATE(time,'%Y-%m-%d %H');
alter table o_retailers_trade_user add column dates char(10) null;
update o_retailers_trade_user
set dates=date(date_time);
desc o_retailers_trade_user;
再检查一下关键字段有无缺失值
SELECT COUNT(user_id) ,COUNT(item_id) ,COUNT(item_category) ,COUNT(behavior_type) ,COUNT(time)
FROM o_retailers_trade_user;
查询后得出并无缺失。
查询结果无异常值;
检查用户行为数据有没有其他类型;
SELECT behavior_type FROM temp_trade
WHERE behavior_type NOT IN (1,2,3,4);
查询结果无异常值;
-- 建新表,放进 去重后的 数据
create table temp_trade like o_retailers_trade_user;
insert into temp_trade select distinct * from o_retailers_trade_user;
平台指标
1. PV、UV、浏览深度(PV/UV)
SELECT
dates,
COUNT(DISTINCT user_id) AS uv,
COUNT(if(behavior_type=1,user_id,null)) AS pv,
CAST(COUNT(if(behavior_type=1,user_id,null))/COUNT(DISTINCT user_id) as decimal(10,2)) AS 'pv/uv'
FROM
temp_trade
GROUP BY
dates;
查询结果:
2. 跳失率
这里定义跳失率=只有浏览行为的用户数/总用户数
SELECT
CONCAT(TRUNCATE(SUM(IF(a.buy_num=0 AND a.car_num=0 AND a.fav_num=0 , 1, 0))/COUNT(a.user_id) * 100,2) ,"%") AS 跳失率
FROM
(
SELECT
user_id,
SUM(IF(behavior_type=2,1,0)) AS buy_num,
SUM(IF(behavior_type=3,1,0)) AS car_num,
SUM(IF(behavior_type=4,1,0)) AS fav_num
FROM
temp_trade
GROUP BY user_id
)a
查询结果
3. 购买转化率
这里的购买转化率定义为:某段时间产生购买行为的用户数/所有到达店铺的访客人数
SELECT
dates,
COUNT(DISTINCT user_id) AS 访客人数,
COUNT(DISTINCT(if(behavior_type=2,user_id,null))) AS 产生购买用户数,
CONCAT(TRUNCATE(COUNT(DISTINCT(if(behavior_type=2,user_id,null)))/COUNT(DISTINCT user_id) * 100,2) ,"%") AS 转化率
FROM
temp_trade
GROUP BY
dates;
查询结果:
同时可以通过这算法求得:每天总行为次数、每天点击次数、收藏次数、加购物⻋次数、购买次数
SELECT
dates,
count( 1 ) AS '每日的总数',
sum( CASE WHEN behavior_type = 1 THEN 1 ELSE 0 END ) AS 'pv',
sum( CASE WHEN behavior_type = 2 THEN 1 ELSE 0 END ) AS 'buy',
sum( CASE WHEN behavior_type = 3 THEN 1 ELSE 0 END ) AS 'cart',
sum( CASE WHEN behavior_type = 4 THEN 1 ELSE 0 END ) AS 'fav',
count( DISTINCT CASE WHEN behavior_type = 2 THEN user_id ELSE NULL END ) / count( DISTINCT user_id ) AS buy_rate
FROM
temp_trade
GROUP BY
dates;
查询结果如下:
商品指标
1. 商品购买转化率
由于转化率的对象是商品,所以以商品id做分组,求对应的用户行为数求和。可得出每商品的在该段时间内的浏览、收藏、加购、购买次数,同时可求得商品购买转化率。
select item_id,
sum(case when behavior_type=1 then 1 else 0 end) as'pv',
sum(case when behavior_type=4 then 1 else 0 end) as'fav',
sum(case when behavior_type=3 then 1 else 0 end) as'cart',
sum(case when behavior_type=2 then 1 else 0 end) as'buy',
count(distinct case when behavior_type=2 then user_id else null
end)/count(distinct user_id) as buy_rate
from temp_trade
group by item_id
order by buy desc;
查询结果:
2. 商品品类购买转化率
此方法与上面商品转化率大致相同,分组对象改为品类id即可。
select item_category,
sum(case when behavior_type=1 then 1 else 0 end) as'pv',
sum(case when behavior_type=4 then 1 else 0 end) as'fav',
sum(case when behavior_type=3 then 1 else 0 end) as'cart',
sum(case when behavior_type=2 then 1 else 0 end) as'buy',
count(distinct case when behavior_type=2 then user_id else null
end)/count(distinct user_id) as buy_rate
from temp_trade
group by item_category
order by buy desc;
查询结果:
用户行为指标
1. 每时段的浏览量及访客量
首先创建hours的新字段,并提取时间;
ALTER TABLE temp_trade ADD COLUMN hours int NOT NULL;
UPDATE temp_trade SET hours = hour(TIME(date_time));
select
hours,
COUNT(DISTINCT user_id) AS 'uv' ,
sum( CASE WHEN behavior_type = 1 THEN 1 ELSE 0 END ) AS 'pv'
from temp_trade
group by hours
ORDER BY hours
查询结果如下:
2. 用户复购情况;
首先求出各用户的购买次数
SELECT user_id, COUNT(user_id)AS 购买次数
FROM temp_trade WHERE behavior_type=2 GROUP BY user_id ORDER BY 购买次数 DESC
查询结果:
用case when函数统计出各复购买次数的用户数
SELECT
(CASE WHEN 购买次数 =1 THEN '1次'
WHEN 购买次数 BETWEEN 2 AND 5 THEN '2-5次'
WHEN 购买次数 BETWEEN 6 AND 10 THEN '6-10次'
WHEN 购买次数 BETWEEN 11 AND 15 THEN '11-15次'
WHEN 购买次数 BETWEEN 16 AND 20 THEN '16-20次'
WHEN 购买次数 BETWEEN 21 AND 25 THEN '21-25次'
WHEN 购买次数 BETWEEN 26 AND 30 THEN '26-30次'
ELSE 0 END )AS 复购买次数 , COUNT(user_id) AS 用户数
FROM
(
SELECT user_id, COUNT(user_id)AS 购买次数
FROM temp_trade WHERE behavior_type=2 GROUP BY user_id
)a
GROUP BY 复购买次数
查询结果如下:
- 用户购买路径;
利用偏移函数倒序列出用户购买一产品的行为路径,并对其进行排序,并筛选倒序时第一行的行为为购买。并创建窗口函数,方便后面的调用。
create view product_user_way as
SELECT
a.*
FROM
(select
user_id,
item_id,
lag ( behavior_type, 4 ) over ( partition by user_id, item_id order by
date_time ) lag_4,
lag ( behavior_type, 3 ) over ( partition by user_id, item_id order by
date_time ) lag_3,
lag ( behavior_type, 2 ) over ( partition by user_id, item_id order by
date_time ) lag_2,
lag ( behavior_type, 1 ) over ( partition by user_id, item_id order by
date_time ) lag_1,
behavior_type,
rank ( ) over ( partition by user_id, item_id order by date_time desc ) as rank_dn #
from
temp_trade
)a
WHERE a.rank_dn=1 AND behavior_type=2
最后将行为串联起来,并对其进行用户数统计;
select
concat(
ifnull( lag_4,'空' ),
"-",
ifnull( lag_3,'空' ),
"-",
ifnull( lag_2,'空' ),
"-",
ifnull( lag_1,'空' ),
"-",
behavior_type
) as user_way,
count( distinct user_id ) as user_count -- 该路径下购买用户数 from
FROM
product_user_way
group by
concat(
ifnull( lag_4,'空' ),
"-",
ifnull( lag_3,'空' ),
"-",
ifnull( lag_2,'空' ),
"-",
ifnull( lag_1,'空' ),
"-",
behavior_type
);
查询结果如下:
(完结)