昨天下午想学一下keras,就想用keras搭一个简单的分类模型,基础模型keras都可以直接调用,本来以为很简单的事情,结果踩了大坑,一直折腾到晚上。话不多说,直接上代码:
import keras
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.layers import Input, Dense, GlobalAveragePooling2D
from keras.models import Model
from keras.utils import to_categorical
import numpy as np
from skimage import io, transform
import os
import random
classes = 5
batch_size = 16
w=200
h=200
img_dir = "F:\Code\MyCNN\data\\flower_photos\\"
class_dic = {"daisy": 0, "dandelion": 1, "roses": 2, "sunflowers": 3, "tulips": 4}
def minibatches(img_dir, batch_size=None):
cate = [img_dir + x for x in os.listdir(img_dir) if os.path.isdir(img_dir + x)]
image_list = []
for i in cate:
for file in os.listdir(i):
image_list.append(os.path.join(i, file))
random.shuffle(image_list)
while True:
batch_cate = random.sample(image_list[:-100], batch_size)
imgs = []
labels = []
for fpath in batch_cate:
class_flag = fpath.split("\\")[-2]
idx = class_dic[class_flag]
#print(idx)
img = io.imread(fpath)
img = transform.resize(img, (w, h))
imgs.append(img)
idx = to_categorical(idx, classes)
labels.append(idx)
yield (np.asarray(imgs, np.float32), np.asarray(labels,np.int32)) #生成器返回的需要是元祖!(x,y)格式
def train():
# images = Input(shape=(200, 200, 3))
# gt_labels = Input(shape=(1,))
basemodel = ResNet50(weights='imagenet', include_top=False)#(images)
x = basemodel.output
print("x.shape Shape:", x.shape)
x_newfc = x = GlobalAveragePooling2D()(x) #(batch_size,?,?,2048) -->(batch_size,channels) 从4维转2维
outputs = Dense(classes, activation='sigmoid')(x)
print(basemodel.output.shape)
print(outputs.shape)
#loss = keras.losses.categorical_crossentropy(y_true =gt_labels, y_pred = outputs)
model = Model(inputs=basemodel.input, outputs=outputs)
keras.optimizers.Adam(lr=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
model.compile(optimizer='Adam',
loss="categorical_crossentropy",
metrics=['accuracy'])
tbCallBack = keras.callbacks.TensorBoard(log_dir='/logs/Graph', histogram_freq=0, write_graph=True, write_images=True)
model.fit_generator(minibatches(img_dir, batch_size), 200, callbacks=[tbCallBack], epochs=2, verbose=1, workers=4) #
model_json = model.to_json()
with open("model/cifar100_resnet50.json", "w") as json_file:
json_file.write(model_json)
model.save_weights("cifar100_resnet50.h5")
print("Saved model to disk")
if __name__ == '__main__':
train()
遇到的主要的问题第一个在生成器那里,仔细看了官方文档后发现是返回的数据格式不对,具体注释中有。
第二个问题是一直报错输入标签数据的维度不对,它需要的是4维,而我输入的是2维,可分类问题的标签不就应该是两维的吗,一开始意识到自己没有onehot编码,然后使用了keras中的to_categorical(),但是仔细一想维度不还是没变。问题还在,没办法,只好看了下别人写的,在Github上翻了翻,找到了一个人写的类似的代码,对比发现我少了一步:x = GlobalAveragePooling2D()(x) resnet的output是4维的,经过这个函数变为2维,一下子就明白自己错哪了,耗费了大半个晚上终于查到了原因,也该认真反思一下自己的过失,这应该早意识到的,写代码应该多思考,不能借助报错来改错,应该把bug消除在最开始写的阶段。
Keras其他的常规用法一看代码就能明白,的确是比TensorFlow简便一点。
继续学习!