机器学习中牛顿法凸优化的通俗解释

之前,我发过一篇文章,通俗地解释了梯度下降算法的数学原理和推导过程,推荐一看。链接如下:

简单的梯度下降算法,你真的懂了吗?

我们知道,梯度下降算法是利用梯度进行一阶优化,而今天我介绍的牛顿优化算法采用的是二阶优化。本文将重点讲解牛顿法的基本概念和推导过程,并将梯度下降与牛顿法做个比较。

1. 牛顿法求解方程的根

有时候,在方程比较复杂的情况下,使用一般方法求解它的根并不容易。牛顿法通过迭代的方式和不断逼近的思想,可以近似求得方程较为准确的根。

牛顿法求根的核心思想是泰勒一阶展开。例如对于方程 f(x) = 0,我们在任意一点 x0 处,进行一阶泰勒展开:

令 f(x) = 0,带入上式,即可得到:


注意,这里使用了近似,得到的 x 并不是方程的根,只是近似解。但是,x 比 x0 更接近于方程的根。效果如下图所示:

然后,利用迭代方法求解,以 x 为 x0,求解下一个距离方程的根更近的位置。迭代公式可以写成:

经过一定次数的有效迭代后,一般都能保证在方程的根处收敛。下面给出整个迭代收敛过程的动态演示。

2. 牛顿法凸优化

上一部分介绍牛顿法如何求解方程的根,这一特性可以应用在凸函数的优化问题上。

机器学习、深度学习中,损失函数的优化问题一般是基于一阶导数梯度下降的。现在,从另一个角度来看,想要让损失函数最小化,这其实是一个最值问题,对应函数的一阶导数 f'(x) = 0。也就是说,如果我们找到了能让 f'(x) = 0 的点 x,损失函数取得最小值,也就实现了模型优化目标。

现在的目标是计算 f'(x) = 0 对应的 x,即 f'(x) = 0 的根。转化为求根问题,就可以利用上一节的牛顿法了。

与上一节有所不同,首先,对 f(x) 在 x0 处进行二阶泰勒展开:

上式成立的条件是 f(x) 近似等于 f(x0)。令 f(x) = f(x0),并对 (x - x0) 求导,可得:

同样,虽然 x 并不是最优解点,但是 x 比 x0 更接近f'(x) = 0 的根。这样,就能得到最优化的迭代公式:

通过迭代公式,就能不断地找到 f'(x) = 0 的近似根,从而也就实现了损失函数最小化的优化目标。

3. 梯度下降 VS 牛顿法

现在,分别写出梯度下降和牛顿法的更新公式:

梯度下降算法是将函数在 xn 位置进行一次函数近似,也就是一条直线。计算梯度,从而决定下一步优化的方向是梯度的反方向。而牛顿法是将函数在 xn 位置进行二阶函数近似,也就是二次曲线。计算梯度和二阶导数,从而决定下一步的优化方向。一阶优化和二阶优化的示意图如下所示:

梯度下降:一阶优化

牛顿法:二阶优化

以上所说的是梯度下降和牛顿法的优化方式差异。那么谁的优化效果更好呢?

首先,我们来看一下牛顿法的优点。第一,牛顿法的迭代更新公式中没有参数学习因子,也就不需要通过交叉验证选择合适的学习因子了。第二,牛顿法被认为可以利用到曲线本身的信息, 比梯度下降法更容易收敛(迭代更少次数)。如下图是一个最小化一个目标方程的例子, 红色曲线是利用牛顿法迭代求解, 绿色曲线是利用梯度下降法求解。显然,牛顿法最优化速度更快一些。

然后,我们再来看一下牛顿法的缺点。我们注意到牛顿法迭代公式中除了需要求解一阶导数之外,还要计算二阶导数。从矩阵的角度来说,一阶导数和二阶导数分别对应雅可比矩阵(Jacobian matrix)和海森矩阵(Hessian matrix)。

Jacobian 矩阵

Hessian 矩阵

牛顿法不仅需要计算Hessian 矩阵,而且需要计算Hessian 矩阵的逆。当数据量比较少的时候,运算速度不会受到大的影响。但是,当数据量很大,特别在深度神经网络中,计算Hessian 矩阵和它的逆矩阵是非常耗时的。从整体效果来看,牛顿法优化速度没有梯度下降算法那么快。所以,目前神经网络损失函数的优化策略大多都是基于梯度下降。

值得一提的是,针对牛顿法的缺点,目前已经有一些改进算法。这类改进算法统称拟牛顿算法。比较有代表性的是 BFGS 和 L-BFGS。

BFGS 算法使用近似的方法来计算Hessian 矩阵的逆,有效地提高了运算速度。但是仍然需要将整个Hessian 近似逆矩阵存储起来,空间成本较大。

L-BFGS 算法是对BFGS 算法的改进,不需要存储 Hessian 近似逆矩阵, 而是直接通过迭代算法获取本轮的搜索方向,空间成本大大降低。

总的来说,基于梯度下降的优化算法,在实际应用中更加广泛一些,例如 RMSprop、Adam等。但是,牛顿法的改进算法,例如 BFGS、L-BFGS 也有其各自的特点,也有很强的实用性。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342