Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
Each number in candidates may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]
AC代码
void digui(vector<int>& candidates, int target, int idx, int sum,
vector<int>& v, set<vector<int>>& ans) {
if (sum == target) {
ans.insert(v);
return;
}
else if (target < sum) return;
else {
for (int i = idx + 1; i < candidates.size(); ++i) {
v.push_back(candidates[i]);
digui(candidates, target, i, sum + candidates[i], v, ans);
v.pop_back();
}
}
}
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
set<vector<int>> ans;
vector<vector<int>> ret;
vector<int> v;
digui(candidates, target, -1, 0, v, ans);
for (auto t : ans) ret.push_back(t);
return ret;
}
};
优化AC代码(运行时去重)
void digui(vector<int>& candidates, int target, int idx, int sum,
vector<int>& v, vector<vector<int>>& ans) {
if (sum == target) {
ans.push_back(v);
return;
}
else if (target < sum) return;
else {
for (int i = idx; i < candidates.size(); ++i) {
if (i != idx && candidates[i] == candidates[i - 1]) continue;
v.push_back(candidates[i]);
digui(candidates, target, i + 1, sum + candidates[i], v, ans);
v.pop_back();
}
}
}
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> v;
digui(candidates, target, 0, 0, v, ans);
return ans;
}
};
总结
1、自己写没有考虑去重,上网搜索学习了去重代码,快了整整三倍时间。
2、递归中的for循环,无论是哪一层递归,只要是进入到第二次循环,那么意味着上一个数字已处理完毕,这个时候如果当前数字与上一个数字相同,那么必然会得到相同的结果,有点难理解,想了很久才绕出来,递归的思想还是不熟。