mapreduce实现流量汇总排序程序

流量汇总程序开发,利用生成好的汇总过的文件接着来进行按照总流量由高到低排序。

因为maptask的最终生成文件中的数据是已经排序过的,默认就是按照key 归并排序,所以在传给reduce task的时候也就是排序过的。所以我们可以将输出bean作为key,电话号码作为value来输出。既然需要对bean根据总流量来进行排序,那么可以让FlowBean来实现WritableComparable接口而不是Writable接口,重写compareTo方法。

public class FlowBean implements WritableComparable<FlowBean>{

    private long upFlow;//上行流量

    private long downFlow;//下行流量

    private long totalFlow;//总流量

    //按照总流量倒序排
    public int compareTo(FlowBean bean) {
        return bean.totalFlow>this.totalFlow?1:-1;
    }

    //序列化时需要无参构造方法
    public FlowBean() {
    }

    public FlowBean(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.totalFlow = upFlow + downFlow;
    }
    public void setFlowBean(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.totalFlow = upFlow + downFlow;
    }
    //序列化方法 hadoop的序列化很简单,要传递的数据写出去即可
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(totalFlow);
    }
    //反序列化方法 注意:反序列化的顺序跟序列化的顺序完全一致
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        this.downFlow = in.readLong();
        this.totalFlow = in.readLong();
    }
    //重写toString以便展示
    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + totalFlow;
    }
    get,set方法
}

public class FlowCountSort {
    /**
     * KEYIN:默认情况下,是mr框架所读到的一行文本的起始偏移量,Long,但是在hadoop中有自己的
     * 更精简的序列化接口(Seria会将类结构都序列化,而实际我们只需要序列化数据),所以不直接用Long,而用LongWritable
     * VALUEIN:默认情况下,是mr框架所读到的一行文本的内容,String,同上,用Text
     * KEYOUT:是用户自定义逻辑处理完成之后输出数据中的key
     * VALUEOUT:是用户自定义逻辑处理完成之后输出数据中的value
     * @author 12706
     *
     */
    static class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{
        FlowBean flowBean = new FlowBean();
        Text text = new Text();
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();
            String[] infos = line.split("\t");
            //获取手机号
            String phoneNum = infos[0];
            //获取上行流量,下行流量
            String upFlow = infos[1];
            String downFlow = infos[2];
            //设置总流量
            text.set(phoneNum);
            flowBean.setFlowBean(new Long(upFlow), new Long(downFlow));
            //根据key进行了排序,所以需要FlowBean实现WritableComparable接口
            context.write(flowBean, text);
        }
    }
    /**
     * KEYIN VALUEIN对应mapper输出的KEYOUT KEYOUT类型对应
     * KEYOUT,VALUEOUT:是自定义reduce逻辑处理结果的输出数据类型
     * KEYOUT
     * VALUEOUT
     * @author 12706
     *
     */
    static class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{
        @Override
        protected void reduce(FlowBean key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            //直接写出去
            context.write(values.iterator().next(), key);
        }
    }
    /**
     * 相当于一个yarn集群的客户端
     * 需要在此封装mr程序的相关运行参数,指定jar包
     * 最后提交给yarn
     * @author 12706
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(FlowCountSort.class);
        //指定本业务job要使用的mapper,reducer业务类
        job.setMapperClass(FlowCountSortMapper.class);
        job.setReducerClass(FlowCountSortReducer.class);
        //虽然指定了泛型,以防框架使用第三方的类型
        //指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        //指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //指定job输入原始文件所在位置
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        //指定job输入原始文件所在位置
        FileOutputFormat.setOutputPath(job,new Path(args[1]));
        //将job中配置的相关参数以及job所用的java类所在的jar包,提交给yarn去运行
        boolean b = job.waitForCompletion(true);
        System.exit(b?0:1);
    }
}

测试:
将工程打成jar包(flowcount.jar)上传到linux,启动hadoop集群。

在/flowcount/output下有汇总过的文件

[root@mini2 ~]# hadoop fs -cat /flowcount/output/part-r-00000
13480253104     180     180     360
13502468823     7335    110349  117684
13560436666     1116    954     2070
13560439658     2034    5892    7926
13602846565     1938    2910    4848
13660577991     6960    690     7650
13719199419     240     0       240
13726230503     2481    24681   27162
13726238888     2481    24681   27162
13760778710     120     120     240
13826544101     264     0       264
13922314466     3008    3720    6728
13925057413     11058   48243   59301
13926251106     240     0       240
13926435656     132     1512    1644
15013685858     3659    3538    7197
15920133257     3156    2936    6092
15989002119     1938    180     2118
18211575961     1527    2106    3633
18320173382     9531    2412    11943
84138413        4116    1432    5548

[root@mini2 ~]# hadoop jar flowcount.jar com.scu.hadoop.mr.FlowCountSort /flowcount/output /flowcount/sortoutput
...
[root@mini2 ~]# hadoop fs -ls /flowcount/sortoutput
Found 2 items
-rw-r--r--   2 root supergroup          0 2017-10-13 04:45 /flowcount/sortoutput/_SUCCESS
-rw-r--r--   2 root supergroup        551 2017-10-13 04:45 /flowcount/sortoutput/part-r-00000
[root@mini2 ~]# hadoop fs -cat /flowcount/sortoutput/part-r-00000
13502468823     7335    110349  117684
13925057413     11058   48243   59301
13726230503     2481    24681   27162
13726238888     2481    24681   27162
18320173382     9531    2412    11943
13560439658     2034    5892    7926
13660577991     6960    690     7650
15013685858     3659    3538    7197
13922314466     3008    3720    6728
15920133257     3156    2936    6092
84138413        4116    1432    5548
13602846565     1938    2910    4848
18211575961     1527    2106    3633
15989002119     1938    180     2118
13560436666     1116    954     2070
13926435656     132     1512    1644
13480253104     180     180     360
13826544101     264     0       264
13719199419     240     0       240
13760778710     120     120     240
13926251106     240     0       240

输出文件/flowcount/sortoutput/part-r-00000中看到了记录就是按照总流量由高到低排序。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容