深度学习-提升训练质量的技巧合集

在深度学习中经常出现一些问题导致训练出来的效果不佳,这篇文章就说一说如何提升网络训练的质量。

索引:

  • 欠拟合
  • 过拟合
  • 如何检测过拟合
  • 如何过拟合
  • 动量梯度下降
  • 学习率自适应
  • 提前停止
  • Dropout
  • 随机梯度下降

欠拟合 underfitting

就是模型的复杂度小于真实的复杂度,因此模型不能够表达真实的情况。如果遇到无论怎么训练,训练的accuracy很低,测试的accuracy很低,loss也下不去,这个时候很可能出现了underfitting。可以使用容量更大的模型来表达更加复杂的情况,或者更多的层数以及更多的节点。


1.png

提高模型容量(model capacity)如下图可以解决欠拟合,然而在实际的应用中过拟合的情况更多


2.png

过拟合Overfitting(Generalization Performance泛化能力)

模型复杂度大于真实模型的复杂度。表现为训练loss和训练accuracy都很好,但是测试accuracy不好。


4.png
5.png

如何检测overfitting:

  • 使用交叉验证,将数据集分为Train、Validation、Test三个部分,其中Validation做模型参数的挑选,test做最后的性能检测
  • 使用K-fold方式,将数据集划分为K份,每次去K-1份用来做train,一份用来做validation,每个epoch切换train和validation的数据集,这样既防止了死记硬背又防止了记忆的特性。这样会对网络有一定的提升(提升不算很大),Kera是提供了一个很方便的方法:network.fit(db_train, epochs=6, validation_split=0.1, validation_freq=2) 会将数据按照0.1和0.9来分。
import  tensorflow as tf
from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
 
 
def preprocess(x, y):
    """
    x is a simple image, not a batch
    """
    x = tf.cast(x, dtype=tf.float32) / 255.
    x = tf.reshape(x, [28*28])
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)
    return x,y
 
 
batchsz = 128
(x, y), (x_test, y_test) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())
 
idx = tf.range(60000)
idx = tf.random.shuffle(idx)
x_train, y_train = tf.gather(x, idx[:50000]), tf.gather(y, idx[:50000])
x_val, y_val = tf.gather(x, idx[-10000:]) , tf.gather(y, idx[-10000:])
print(x_train.shape, y_train.shape, x_val.shape, y_val.shape)
## train
db_train = tf.data.Dataset.from_tensor_slices((x_train,y_train))
db_train = db_train.map(preprocess).shuffle(50000).batch(batchsz)
 
db_val = tf.data.Dataset.from_tensor_slices((x_val,y_val))
db_val = db_val.map(preprocess).shuffle(10000).batch(batchsz)
 
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.map(preprocess).batch(batchsz) 
 
sample = next(iter(db_train))
print(sample[0].shape, sample[1].shape)
 
 
network = Sequential([layers.Dense(256, activation='relu'),
                     layers.Dense(128, activation='relu'),
                     layers.Dense(64, activation='relu'),
                     layers.Dense(32, activation='relu'),
                     layers.Dense(10)])
network.build(input_shape=(None, 28*28))
network.summary()
 
network.compile(optimizer=optimizers.Adam(lr=0.01),
      loss=tf.losses.CategoricalCrossentropy(from_logits=True),
      metrics=['accuracy']
   )
 
network.fit(db_train, epochs=6, validation_data=db_val, validation_freq=2)
 
print('Test performance:') 
network.evaluate(db_test)
 
 
sample = next(iter(db_test))
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]
# convert back to number 
y = tf.argmax(y, axis=1)
pred = tf.argmax(pred, axis=1)
 
print(pred)
print(y)

如何减轻Overfitting

原则:如果不是必要的就选择最小的。

主流的做法:

  • 提供更多的数据
  • 降低模型的复杂度,数据集的大小和网络的大小是相对的
  • Dropout
  • Data argumentation
  • Early Stopping 使用Validation set来做一个提前的终结
  • Regularization
    Regularization


    6.png

    经过Regularization退化成更少次方的网络结构,更低复杂度的网络结构从而降低Overfitting,是一种weight decay的方法

通过下面的例子可以清楚的看到Regularization降低网络的表达能力从而防止噪声造成的overfitting


7.png

Regularization常用的两种,第一种是在原来的loss的基础上加上一范数,第二种是在原来的loss的基础上加一个tensor的二范数,最常用的是第二种,注意这里的lamda是一个超参数需要人为的调整。


8.png

在keras中可通过下面的代码kera.regularizers.l2(lamda)进行Regularization的快速添加添加

9.png

另一种是人为的对每个w和b进行Regularization的处理,这样的灵活性比较大:


10.png

momentum动量:

11.png

梯度更新最基本的公式是直接使用一个固定的学习率,然而这样的方式的缺点很明显吧,这里额外的使用Zk,这个Zk是上一次的方向,这样两个方向加起来就是当前的更新方向和之前的更新方向的结合。

通过下面的两个例子进行比较:

无动量,固定学习率时:可以发现在局部最优解的时候就已经停止了,并且在一开始的时候更新的方向是非常随机的


12.png

使用动量时的更新:


13.png

在实际使用的时候很简单直接使用内置的函数就可以不需要人为的完成,这里也可以使用Adam优化器,对于Adam是没有动量的这个参数的而是在内部优化完成:
14.png

Learning Rate Tuning:

一般刚开始设置一个大的学习率,随着学习的进行动态的缩小学习率,调整非常的简单但是有效,这是逐渐衰减

15.png

这是突然衰减,具体的策略可以自定义:

16.png

Early Stop:

由于训练的epoch如果很大就有可能出现overfitting的情况,early stop就是说在出现overfitting之前就将模型停止掉,很好理解


17.png

通常通过Validation set来监测在最高点的时候停止,这个经验的判断,因为下降之后有可能又上升。

Dropout

learning less, learning better,


18.png

可以通过下图比较dropout的效果:

19.png

添加Dropout的方法很简单,直接layers.Dropout(断掉的概率)即可

20.png

注意,如果做了dropout之后,因为train的时候会dropout但是在test的时候不要dropout,因此train和test的时候逻辑是不一样的

  • train – true
  • validation – false
  • test -false


    21.png

Stochastic Gradient Descent 随机梯度下降(SGD)

注意虽然叫做随机但是不是真正的随机,而是符合某种分步的下降,随机是指从数据集中随机选取batch,然后计算他的梯度的平均值,也就是把原来整个数据集的梯度的均值变成batch上所有梯度的均值,这样因为由于显存的限制不可能一次把所有数据都加载进来计算一次,因此要使用SGD的策略一次取一个批次来计算。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容