Deepgreen DB 是什么?

Deepgreen DB 全称 Vitesse Deepgreen DB,它是一个可扩展的大规模并行(通常称为MPP)数据仓库解决方案,起源于开源数据仓库项目Greenplum DB(通常称为GP或GPDB)。所以已经熟悉了GP的朋友,可以无缝切换到Deepgreen。

它几乎拥有GP的所有功能,在保有GP所有优势的基础上,Deepgreen对原查询处理引擎进行了优化,新一代查询处理引擎扩展了:

  • 优越的连接和聚合算法

  • 新的溢出处理子系统

  • 基于JIT的查询优化、矢量扫描和数据路径优化

下面简单介绍一下Deepgreen的主要特性(主要与Greenplum对比):


1. 100% GPDB

Deepgreen与Greenplum几乎100%一致,这里说几乎,是因为Deepgreen也剔除了一些Greenplum上的鸡肋功能,例如MapReduce支持,可以说保有的都是精华。从SQL语法、存储过程语法,到数据存储格式,再到像gpstart/gpfdist等组件,Deepgreen为想要从Greenplum迁移过来的用户将迁移影响降到最低。尤其是在下面这些方面:

  • 除了以quicklz方式压缩的数据需要修改外,其他数据无需重新装载

  • DML和DDL语句没有任何改变

  • UDF(用户定义函数)语法没有任何改变

  • 存储过程语法没有任何改变

  • JDBC/ODBC等连接和授权协议没有任何改变

  • 运行脚本没有任何改变(例如备份脚本)

那么Deepgreen和Greenplum的不同之处在哪呢?总结成一个词就是:快!快!快!(重要的事情说三遍)。因为大部分的OLAP工作都与CPU的性能有关,所以针对CPU优化后的Deepgreen在性能测试中,可以达到比原Greenplum快3~5倍的性能。


2.更快的Decimal类型

Deepgreen提供了两个更精确的Decimal类型:Decimal64和Decimal128,它们比Greenplum原有的Decimal类型(Numeric)更有效。因为它们更精确,相比于fload/double类型,更适合用在银行等对数据准确性要求高的业务场景。

安装:

这两个数据类型需要在数据库初始化以后,通过命令加载到需要的数据库中:
dgadmin@flash:~$ source deepgreendb/greenplum_path.sh
dgadmin@flash:~$ cd $GPHOME/share/postgresql/contrib/
dgadmin@flash:~/deepgreendb/share/postgresql/contrib$ psql postgres -f pg_decimal.sql

测试一把:

使用语句:select avg(x), sum(2*x) from table
数据量:100万
dgadmin@flash:~$ psql -d postgres
psql (8.2.15)
Type "help" for help.

postgres=# drop table if exists tt;
NOTICE:  table "tt" does not exist, skipping
DROP TABLE
postgres=# create table tt(
postgres(# ii bigint,
postgres(#  f64 double precision,
postgres(# d64 decimal64,
postgres(# d128 decimal128,
postgres(# n numeric(15, 3))
postgres-# distributed randomly;
CREATE TABLE
postgres=# insert into tt
postgres-# select i,
postgres-#     i + 0.123,
postgres-#     (i + 0.123)::decimal64,
postgres-#     (i + 0.123)::decimal128,
postgres-#     i + 0.123
postgres-# from generate_series(1, 1000000) i;
INSERT 0 1000000
postgres=# \timing on
Timing is on.
postgres=# select count(*) from tt;
  count
---------
 1000000
(1 row)

Time: 161.500 ms
postgres=# set vitesse.enable=1;
SET
Time: 1.695 ms
postgres=# select avg(f64),sum(2*f64) from tt;
       avg        |       sum
------------------+------------------
 500000.622996815 | 1000001245993.63
(1 row)

Time: 45.368 ms
postgres=# select avg(d64),sum(2*d64) from tt;
    avg     |        sum
------------+-------------------
 500000.623 | 1000001246000.000
(1 row)

Time: 135.693 ms
postgres=# select avg(d128),sum(2*d128) from tt;
    avg     |        sum
------------+-------------------
 500000.623 | 1000001246000.000
(1 row)

Time: 148.286 ms
postgres=# set vitesse.enable=1;
SET
Time: 11.691 ms
postgres=# select avg(n),sum(2*n) from tt;
         avg         |        sum
---------------------+-------------------
 500000.623000000000 | 1000001246000.000
(1 row)

Time: 154.189 ms
postgres=# set vitesse.enable=0;
SET
Time: 1.426 ms
postgres=# select avg(n),sum(2*n) from tt;
         avg         |        sum
---------------------+-------------------
 500000.623000000000 | 1000001246000.000
(1 row)

Time: 296.291 ms

结果列表:

45ms - 64位float
136ms - decimal64
148ms - decimal128
154ms - deepgreen numeric
296ms - greenplum numeric

通过上面的测试,decimal64(136ms)类型比deepgreen numeric(154ms)类型快,比greenplum numeric快两倍,生产环境中快5倍以上。

3.支持JSON

Deepgreen支持JSON类型,但是并不完全支持。不支持的函数有:json_each,json_each_text,json_extract_path,json_extract_path_text, json_object_keys, json_populate_record, json_populate_recordset, json_array_elements, and json_agg.

安装:

执行下面命令扩展json支持:

dgadmin@flash:~$ psql postgres -f $GPHOME/share/postgresql/contrib/json.sql

测试一把:

dgadmin@flash:~$ psql postgres
psql (8.2.15)
Type "help" for help.

postgres=# select '[1,2,3]'::json->2;
 ?column?
----------
 3
(1 row)

postgres=# create temp table mytab(i int, j json) distributed by (i);
CREATE TABLE
postgres=# insert into mytab values (1, null), (2, '[2,3,4]'), (3, '[3000,4000,5000]');
INSERT 0 3
postgres=#
postgres=# insert into mytab values (1, null), (2, '[2,3,4]'), (3, '[3000,4000,5000]');
INSERT 0 3
postgres=# select i, j->2 from mytab;
 i | ?column?
---+----------
 2 | 4
 2 | 4
 1 |
 3 | 5000
 1 |
 3 | 5000
(6 rows)


4.高效压缩算法

Deepgreen延续了Greenplum的zlib压缩算法用于存储压缩。除此之外,Deepgreen还提供两种对数据库负载更优的压缩格式:zstd和lz4.

如果客户在列存或者只追加堆表存储时要求更优的压缩比,请选择zstd压缩算法。相比于zlib,zstd有更好的压缩比,并且能更有效利用CPU。

如果客户有大量读取需求,那么可以选择lz4压缩算法,因为它有着惊人的解压速度。虽然在压缩比上lz4并没有zlib和zstd那么出众,但是为了满足高读取负载作出一些牺牲还是值得的。

有关于这两种压缩算法的具体内容,详见其主页:

  • zstd主页 http://facebook.github.io/zstd/

  • lz4主页 http://lz4.github.io/lz4/

测试一把:

这里只针对 不压缩/zlib/zstd/lz4四种,进行简单的测试,我的机器性能并不高,所有结果仅供参考:

postgres=# create temp table ttnone (
postgres(#     i int,
postgres(#     t text,
postgres(#     default column encoding (compresstype=none))
postgres-# with (appendonly=true, orientation=column)
postgres-# distributed by (i);
CREATE TABLE
postgres=# \timing on
Timing is on.
postgres=# create temp table ttzlib(
postgres(#     i int,
postgres(#     t text,
postgres(#     default column encoding (compresstype=zlib, compresslevel=1))
postgres-# with (appendonly=true, orientation=column)
postgres-# distributed by (i);
CREATE TABLE
Time: 762.596 ms
postgres=# create temp table ttzstd (
postgres(#     i int,
postgres(#     t text,
postgres(#     default column encoding (compresstype=zstd, compresslevel=1))
postgres-# with (appendonly=true, orientation=column)
postgres-# distributed by (i);
CREATE TABLE
Time: 827.033 ms
postgres=# create temp table ttlz4 (
postgres(#     i int,
postgres(#     t text,
postgres(#     default column encoding (compresstype=lz4))
postgres-# with (appendonly=true, orientation=column)
postgres-# distributed by (i);
CREATE TABLE
Time: 845.728 ms
postgres=# insert into ttnone select i, 'user '||i from generate_series(1, 100000000) i;
INSERT 0 100000000
Time: 104641.369 ms
postgres=# insert into ttzlib select i, 'user '||i from generate_series(1, 100000000) i;
INSERT 0 100000000
Time: 99557.505 ms
postgres=# insert into ttzstd select i, 'user '||i from generate_series(1, 100000000) i;
INSERT 0 100000000
Time: 98800.567 ms
postgres=# insert into ttlz4 select i, 'user '||i from generate_series(1, 100000000) i;
INSERT 0 100000000
Time: 96886.107 ms
postgres=# select pg_size_pretty(pg_relation_size('ttnone'));
 pg_size_pretty
----------------
 1708 MB
(1 row)

Time: 83.411 ms
postgres=# select pg_size_pretty(pg_relation_size('ttzlib'));
 pg_size_pretty
----------------
 374 MB
(1 row)

Time: 4.641 ms
postgres=# select pg_size_pretty(pg_relation_size('ttzstd'));
 pg_size_pretty
----------------
 325 MB
(1 row)

Time: 5.015 ms
postgres=# select pg_size_pretty(pg_relation_size('ttlz4'));
 pg_size_pretty
----------------
 785 MB
(1 row)

Time: 4.483 ms
postgres=# select sum(length(t)) from ttnone;
    sum
------------
 1288888898
(1 row)

Time: 4414.965 ms
postgres=# select sum(length(t)) from ttzlib;
    sum
------------
 1288888898
(1 row)

Time: 4500.671 ms
postgres=# select sum(length(t)) from ttzstd;
    sum
------------
 1288888898
(1 row)

Time: 3849.648 ms
postgres=# select sum(length(t)) from ttlz4;
    sum
------------
 1288888898
(1 row)

Time: 3160.477 ms


5.数据采样

从Deepgreen 16.16版本开始,内建支持通过SQL进行数据真实采样,您可以通过定义行数或者定义采样比两种方式进行采样:

  • SELECT {select-clauses} LIMIT SAMPLE {n} ROWS;

  • SELECT {select-clauses} LIMIT SAMPLE {n} PERCENT;

测试一把:

postgres=# select count(*) from ttlz4;
   count
-----------
 100000000
(1 row)

Time: 903.661 ms
postgres=# select * from ttlz4 limit sample 0.00001 percent;
    i     |       t
----------+---------------
  3442917 | user 3442917
  9182620 | user 9182620
  9665879 | user 9665879
 13791056 | user 13791056
 15669131 | user 15669131
 16234351 | user 16234351
 19592531 | user 19592531
 39097955 | user 39097955
 48822058 | user 48822058
 83021724 | user 83021724
  1342299 | user 1342299
 20309120 | user 20309120
 34448511 | user 34448511
 38060122 | user 38060122
 69084858 | user 69084858
 73307236 | user 73307236
 95421406 | user 95421406
(17 rows)

Time: 4208.847 ms
postgres=# select * from ttlz4 limit sample 10 rows;
    i     |       t
----------+---------------
 78259144 | user 78259144
 85551752 | user 85551752
 90848887 | user 90848887
 53923527 | user 53923527
 46524603 | user 46524603
 31635115 | user 31635115
 19030885 | user 19030885
 97877732 | user 97877732
 33238448 | user 33238448
 20916240 | user 20916240
(10 rows)

Time: 3578.031 ms


6.TPC-H性能

Deepgreen与Greenplum的性能对比,请参考我另外两个帖子:

《Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本)》

《Deepgreen与Greenplum TPC-H性能测试对比(使用VitesseData脚本)》

另外Deepgreen自身搭载的高性能组件Xdrive,在后期会另行分享~

End~


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容