一提到ARC内的引用(reference
),条件反射式想起的就是weak
+retainCount
+retain
+release
等一堆词.
retain
+release
是对retainCount
的操作不必多说.
weak
的功能:通过weak
指针能获取到某个对象,却不增加对象的retainCount
,对象销毁,weak
指针自动置为nil
.
那么这些weak
+retainCount
是靠怎么实现的呢?
答案:
weak
靠 对象优化的isa
与SideTables
结实使用
retainCount
靠 对象优化的isa
与SideTables
结实使用
优化的
isa
在前面已经提过,里面的9个字段各有用处,忘了请戳.
1. SideTables
SideTables
是一个全局的Hash表
,以对象的地址为Key
能拿到对应的SideTable
.SideTable
就是管理retainCount
和weak指针指向
的最小单位.
SideTable:
spinlock_t slock;//操作retainCount和weak指针指向的操作比较频繁,slock是保证操作的线程安全的
RefcountMap refcnts;//管理retainCount
weak_table_t weak_table;//管理weak指针指向
1.1 RefcountMap
- 二层过滤
很奇怪吧!保存一个对象的retainCount
随便弄块内存空间不就完事了吗?还用一个Map
干嘛?我们又得回到开始:SideTables
是一个全局的Hash表
,是Hash表
就会有冲突(关于Hash表
有不明白的请戳).当不同地址的两个对象对应同一个SideTable
时,这时就需要RefcountMap
应用对象地址来做第二层过滤.所以你看到RefcountMap refcnts
到存储retainCount
的内存之间要用一个find()
方法.
- 存储
在找到真正存储对象retainCount
的64位空间后还要注意:
#define SIDE_TABLE_WEAKLY_REFERENCED (1UL<<0)
#define SIDE_TABLE_DEALLOCATING (1UL<<1)
64位的倒数第一位标记当前对象是否被weak指针指向(1:有weak指针指向);
64位的倒数第二位标记当前对象是否正在销毁状态(1:处在正在销毁状态);
其他的62位都可以用于存储retainCount
.
1.2 weak_table_t
- 二层过滤
也是因为Hash表
冲突,weak_table_t
有一个weak_entry_t
数组,也就是说在进入weak_table_t
也需要通过遍历才能确定真正管理某个对象weak指针指向
的weak_entry_t
.
struct weak_entry_t {
DisguisedPtr<objc_object> referent;
union {
struct {
weak_referrer_t *referrers;
uintptr_t out_of_line_ness : 2;
uintptr_t num_refs : PTR_MINUS_2;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
struct {
// out_of_line_ness field is low bits of inline_referrers[1]
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
};
};
};
referent
==>对象地址,用于weak_entry_t 数组
遍历时的比对;
联合体内struct1
->weak_referrer_t *referrers;
联合体内struct2
->inline_referrers[WEAK_INLINE_COUNT]
weak变量的指针
个数不超过4个用inline_referrers
,
weak变量的指针
个数超过4个用referrers
.
到此为止,SideTables
的结构已经介绍完毕,weak
与retainCount
的实现会在后面再做具体说明(retainCount
的实现需要SideTables
以外的东西,难度有点大,先给您提个醒).
2. retainCount的实现
上面已经说过Sidetables
->Sidetable sidetable
->RefcountMap refcnts
来保存对象的retainCount
.但是在对象的最开始阶段不用以上方案,只有retainCount
大到一定程度才会用以上方案.具体如下:
首先,让我们回到类对象的isa上( arm64版本)
union isa_t
{
Class cls;
uintptr_t bits;
struct {
uintptr_t nonpointer : 1;
uintptr_t has_assoc : 1;
uintptr_t has_cxx_dtor : 1;
uintptr_t shiftcls : 33;
uintptr_t magic : 6;
uintptr_t weakly_referenced : 1;
uintptr_t deallocating : 1;
uintptr_t has_sidetable_rc : 1;
uintptr_t extra_rc : 19;
};
}
目标锁定:has_sidetable_rc
(1位)+extra_rc
(19位).这就是一个对象存储retainCount
的两个字段.
刚开始isa.has_sidetable_rc
则等于0,retainCount
会存在isa.extra_rc
上,isa.extra_rc
有19位,可以存储2^20-1= 1048575
.
当retainCount
大到超出isa.extra_rc
的显示范围,会借助Sidetable
来继续记录retainCount
,而一旦启用Sidetable
来继续记录retainCount
,isa.has_sidetable_rc
则等于1.
2.1 retainCount在哪里
很确切的说对象的isa
内的has_sidetable_rc
+extra_rc
只保存"多余"的retainCount
,
- (NSUInteger)retainCount {
return ((id)self)->rootRetainCount();
}
inline uintptr_t objc_object::rootRetainCount() {
isa_t bits = LoadExclusive(&isa.bits);
uintptr_t rc = 1 + bits.extra_rc;
if (bits.has_sidetable_rc) {
rc += sidetable_getExtraRC_nolock();
}
return rc;
}
由上可以得到retainCount的组成:
1
extra_rc //中存储的值
sidetable_getExtraRC_nolock //Sidetable存储的值
这样只保存"多余"的retainCount
,可以免去很多不必要的操作(如:对象初始化完成后就不必对retainCount
操作,在对象存储
着的retainCount
等于0的情况下,再release
一次直接调用dealloc
也不必再操作retainCount
).
2.2 加retainCount retain
retain的调用栈:
ALWAYS_INLINE id
objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
if (isTaggedPointer()) return (id)this;
bool sideTableLocked = false;
bool transcribeToSideTable = false;
isa_t oldisa;
isa_t newisa;
do {
transcribeToSideTable = false;
oldisa = LoadExclusive(&isa.bits);
newisa = oldisa;
if (slowpath(!newisa.nonpointer)) {
ClearExclusive(&isa.bits);
if (!tryRetain && sideTableLocked) sidetable_unlock();
if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
else return sidetable_retain();
}
// don't check newisa.fast_rr; we already called any RR overrides
if (slowpath(tryRetain && newisa.deallocating)) {
ClearExclusive(&isa.bits);
if (!tryRetain && sideTableLocked) sidetable_unlock();
return nil;
}
uintptr_t carry;
newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry); // extra_rc++
if (slowpath(carry)) {
// newisa.extra_rc++ overflowed
if (!handleOverflow) {
ClearExclusive(&isa.bits);
return rootRetain_overflow(tryRetain);
}
// Leave half of the retain counts inline and
// prepare to copy the other half to the side table.
if (!tryRetain && !sideTableLocked) sidetable_lock();
sideTableLocked = true;
transcribeToSideTable = true;
newisa.extra_rc = RC_HALF;
newisa.has_sidetable_rc = true;
}
} while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)));
if (slowpath(transcribeToSideTable)) {
// Copy the other half of the retain counts to the side table.
sidetable_addExtraRC_nolock(RC_HALF);
}
if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
return (id)this;
}
- 只加isa.extra_rc
这个操作相对简单:
1.oldisa = LoadExclusive(&isa.bits);
==>读取isa;
2.newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry);//extra_rc++
==>isa.extra_rc加1;
3.StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)
==>更新isa.
- 超出isa.extra_rc的存储范围,启用Sidetable
经过第1步与第2步发现溢出,递归调用rootRetain(bool tryRetain, bool handleOverflow)
并将handleOverflow
标记为ture
;
重复第1步与第2步,溢出,设置isa.extra_rc = RC_HALF;
调用StoreExclusive
更新isa;
RC_HALF
define RC_HALF (1ULL<<18)
isa.extra_rc占19位,超出范围就是 (1ULL<<19), (1ULL<<19)/2 = (1ULL<<18)
// Copy the other half of the retain counts to the side table.正如注释所说的拿出一半的retaincount让Sidetable存储,另一半还有由isa.extra_rc存储
操作Sidetable:
bool
objc_object::sidetable_addExtraRC_nolock(size_t delta_rc)
{
assert(isa.nonpointer);
SideTable& table = SideTables()[this];
size_t& refcntStorage = table.refcnts[this];
size_t oldRefcnt = refcntStorage;
// isa-side bits should not be set here
assert((oldRefcnt & SIDE_TABLE_DEALLOCATING) == 0);
assert((oldRefcnt & SIDE_TABLE_WEAKLY_REFERENCED) == 0);
if (oldRefcnt & SIDE_TABLE_RC_PINNED) return true;
uintptr_t carry;
size_t newRefcnt =
addc(oldRefcnt, delta_rc << SIDE_TABLE_RC_SHIFT, 0, &carry);
if (carry) {
refcntStorage =
SIDE_TABLE_RC_PINNED | (oldRefcnt & SIDE_TABLE_FLAG_MASK);
return true;
}
else {
refcntStorage = newRefcnt;
return false;
}
}
SideTable& table = SideTables()[this];
==>SideTables
以对象地址为Key
获取对应的SideTable
;
size_t& refcntStorage = table.refcnts[this];
==>SideTable table
->RefcountMap refcnts
内用对象的地址获取对应的对象的retainCount
(即:refcntStorage
);
最后两位是有意义的标志位(前面说SideTables
已经交代过了),所以加的时候要左移两位(SIDE_TABLE_RC_SHIFT)
,将加好的newRefcnt
存回refcntStorage
.
当然操作Sidetable
也有判断溢出,不过返回真假出去已经没人管了.
2.3 减retainCount release
- 只减isa.extra_rc
1.oldisa = LoadExclusive(&isa.bits);
==>读取isa;
2.newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry);//extra_rc--
==>isa.extra_rc减1;
3.StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)
==>更新isa.
- 由Sidetable中借位,再减
减isa.extra_rc
剪到溢出,跳转到underflow
,看isa.has_sidetable_rc
是否为1,为0直接去做dealloc
方面的工作(dealloc的具体实现后面也会细说).为1则递归调用rootRelease(bool performDealloc, bool handleUnderflow)
并将handleUnderflow
标记为ture
;
重复以上流程后,向Sidetable
借位,借出RC_HALF
,然后将借出的-1赋给isa.extra_rc
,保存.
3. weak的实现
对于weak
的实现,我们先来个卡通
版的理解:
全局维护了一个weak表
,用于存储指向对象的所有weak指针
.存储方式:Key
是对象的地址,Value
是weak变量的指针
的数组
NSObject * object = [[NSObject alloc]init];
__weak NSObject * weak_object1 = object;
__weak NSObject * weak_object2 = object;
NSLog(@"strong-point-to-%@",object);
NSLog(@"weak1-point-to-%@",weak_object1);
NSLog(@"weak2-point-to-%@",weak_object2);
NSLog(@"strong-point-address-%p",&object);
NSLog(@"weak1-point-address-%p",&weak_object1);
NSLog(@"weak2-point-address-%p",&weak_object2);
打印:
strong-point-to-<NSObject: 0x61800000a9a0>
weak1-point-to-<NSObject: 0x61800000a9a0>
weak2-point-to-<NSObject: 0x61800000a9a0>
strong-point-address-0x7fff56c7d9e8
weak1-point-address-0x7fff56c7d9e0
weak2-point-address-0x7fff56c7d9d8
Key | Value |
---|---|
0x61800000a9a0 | @[0x7fff56c7d9e8,0x7fff56c7d9e0,0x7fff56c7d9d8] |
1.这样的绑定,当然可以让weak变量的指针
顺利的拿到对应的对象,而且没有增加对象的引用计数.
2.当作为Key
的对象地址上的对象销毁的时候也会主动将作为Value
的weak变量的指针
的数组内的每个地址都指向nil
.
对象的
isa.weakly_referenced
的作用就是对对象自身
有没有被weak变量的指针
指向的标记:
当对象被weak变量的指针
指向的时候isa.weakly_referenced
=1,否则isa.weakly_referenced
=0.
这样的标记是为了在对象销毁时判断要不要进行获取对象对应的weak变量的指针
的数组并做置为nil
的操作.具体实现dealloc篇章内会说.
当然以上是个卡通版的理解.具体集合Sidetables
就是:
1.依据对象地址,在Sidetables
拿到对应的Sidetable
2.而在Sidetable sidetable
->weak_table_t weak_table
->weak_entry_t *weak_entries
通过遍历比对找到对应的weak_entry_t
.
3.在weak_entry_t
内的weak_referrer_t *referrers
或者weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
前面已经讲过:
weak变量的指针
个数不超过4个用inline_referrers
,
weak变量的指针
个数超过4个用referrers
.
文章参考:
objc源码
iOS管理对象内存的数据结构以及操作算法--SideTables、RefcountMap、weak_table_t