R语言ggplot2画漂亮的环形柱形图的一个实例

在twitter上看到一个图

image.png

配色很漂亮,代码和数据也是公开的,今天的推文来学习一下他的代码

代码来源的链接是 https://github.com/NearAndDistant/data_science_with_r

这个链接还有很多其他的R语言ggplot2作图的例子,代码和数据都是公开的,大家自己有时间可以重复一下其中的代码

image.png

这个环形柱形图的代码是以shiny app的形式提供的,这里我们忽略shiny app,只把作图代码拆解出来

首先是整理数据的代码

library(tidyverse)
# import data for project
breed_traits_raw      <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-02-01/breed_traits.csv')
breed_rank_all_raw    <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-02-01/breed_rank.csv')
### Clean and Wrangle 
# dogs rank clean
dogs_rank_long <- 
  breed_rank_all_raw %>%
  pivot_longer(cols = c(`2013 Rank`:`2020 Rank`), names_to = "year", values_to = "rank") %>%
  mutate(year = as.numeric(str_remove(year, " Rank"))) %>%
  select(Breed, year, rank, everything()) %>%
  janitor::clean_names() %>%
  mutate(breed = str_squish(breed))
# dog traits clean
dogs_trait_long <-
  breed_traits_raw %>%
  select(-`Coat Type`, -`Coat Length`) %>%
  pivot_longer(cols = c(`Affectionate With Family` : `Mental Stimulation Needs`), names_to = "attribute", values_to = "value") %>%
  janitor::clean_names() %>%
  mutate(breed = str_squish(breed))
# transform
top_dogs <-
dogs_rank_long %>%
  left_join(dogs_trait_long) %>%
  filter(year == 2020) %>%
  mutate(breed = as_factor(breed)) %>%
  group_by(attribute) %>%
    mutate(attribute = str_remove(attribute, " Level"),
           attribute = case_when(attribute == "Affectionate With Family"   ~ "Affectionate",
                                 attribute == "Good With Young Children"   ~ "Child-Friendly",
                                 attribute == "Good With Other Dogs"       ~ "Combativeness",
                                 attribute == "Openness To Strangers"      ~ "Openness",
                                 attribute == "Watchdog/Protective Nature" ~ "Protective",
                                 attribute == "Coat Grooming Frequency"    ~ "Grooming",
                                 attribute == "Mental Stimulation Needs"   ~ "Stimulation",
                                 TRUE ~ attribute)) %>%
    mutate(attribute = factor(attribute)) %>%
  ungroup() %>%
  group_by(breed) %>%
    arrange(desc(value)) %>%
    mutate(id = row_number()) %>%
  ungroup() %>% #2 Pissaro #1 Signac
  mutate(fill = case_when(attribute == "Affectionate"   ~  "#fbe183",
                          attribute == "Child-Friendly" ~  "#2b9b81",
                          attribute == "Combativeness"  ~  "#d8443c",
                          attribute == "Openness"       ~  "#e6a2a6",
                          attribute == "Playfulness"    ~  "#9f5691",
                          attribute == "Adaptability"   ~  "#f4c40f",
                          attribute == "Trainability"   ~  "#aa7aa1",
                          attribute == "Energy"         ~  "#fe9b00",
                          attribute == "Protective"     ~  "#e87b89",
                          attribute == "Stimulation"    ~  "#de597c",
                          attribute == "Barking"        ~  "#9b3441",
                          attribute == "Grooming"       ~  "#92c051",
                          attribute == "Shedding"       ~  "#633372",
                          attribute == "Drooling"       ~  "#1f6e9c"))

这部分我们就不介绍了,运行完上述代码可以拿到top_dogs这个数据集

如果读取数据的部分不能访问,我把数据集下载下来了,可以在公众号后台留言20220210获取

接下来作图是从top_dogs这个数据集开始

首先是读取数据

top_dogs<-read.csv("top_dogs.csv")
head(top_dogs)

画图代码

首先是背景的圈和文字

top_dogs %>% 
  filter(breed == "Russell Terriers") %>% 
  ggplot() +
  geom_segment(data = data.frame(y=seq(0,5,1)), 
               aes(x = -0.5, xend = 15, y=y, yend=y), 
               linetype = "ff", color = "grey90") +
  geom_text(data = data.frame(y=seq(0,5,1)), 
            aes(x = -0.15 , y = y + 0.5, label = y), 
            family = "serif", 
            size = 3, fontface = "bold") +
  coord_polar(clip = "off") +
  geom_text(aes(x = id, y = 7, label = attribute), 
            size = 3, fontface = 'bold', 
            family = "serif") +
  geom_text(aes(label = breed),
            x = -0.5, y = -1.7, size = 4, 
            fontface = 'bold', 
            family = "serif") 

然后是添加柱子

top_dogs %>% 
  filter(breed == "Russell Terriers") %>% 
  ggplot() +
  geom_segment(data = data.frame(y=seq(0,5,1)), 
               aes(x = -0.5, xend = 15, y=y, yend=y), 
               linetype = "ff", color = "grey90") +
  geom_text(data = data.frame(y=seq(0,5,1)), 
            aes(x = -0.15 , y = y + 0.5, label = y), 
            family = "serif", 
            size = 3, fontface = "bold") +
  coord_polar(clip = "off") +
  geom_text(aes(x = id, y = 7, label = attribute), 
            size = 3, fontface = 'bold', 
            family = "serif") +
  geom_text(aes(label = breed),
            x = -0.5, y = -1.7, size = 4, 
            fontface = 'bold', 
            family = "serif") +
  geom_col(aes(id, value, fill = fill), 
           show.legend = FALSE) 
image.png

设置内部空心化

top_dogs %>% 
  filter(breed == "Russell Terriers") %>% 
  ggplot() +
  geom_segment(data = data.frame(y=seq(0,5,1)), 
               aes(x = -0.5, xend = 15, y=y, yend=y), 
               linetype = "ff", color = "grey90") +
  geom_text(data = data.frame(y=seq(0,5,1)), 
            aes(x = -0.15 , y = y + 0.5, label = y), 
            family = "serif", 
            size = 3, fontface = "bold") +
  coord_polar(clip = "off") +
  geom_text(aes(x = id, y = 7, label = attribute), 
            size = 3, fontface = 'bold', 
            family = "serif") +
  geom_text(aes(label = breed),
            x = -0.5, y = -1.7, size = 4, 
            fontface = 'bold', 
            family = "serif") +
  geom_col(aes(id, value, fill = fill), 
           show.legend = FALSE) +
  scale_fill_identity() +
  scale_y_continuous(limits = c(-5.5, 7), breaks = seq(0,5,1)) +
  scale_x_continuous(limits = c(-0.5, max(top_dogs$id)+1)) 
image.png

在内部添加图片

top_dogs %>% 
  filter(breed == "Russell Terriers") %>% 
  ggplot() +
  geom_segment(data = data.frame(y=seq(0,5,1)), 
               aes(x = -0.5, xend = 15, y=y, yend=y), 
               linetype = "ff", color = "grey90") +
  geom_text(data = data.frame(y=seq(0,5,1)), 
            aes(x = -0.15 , y = y + 0.5, label = y), 
            family = "serif", 
            size = 3, fontface = "bold") +
  coord_polar(clip = "off") +
  geom_text(aes(x = id, y = 7, label = attribute), 
            size = 3, fontface = 'bold', 
            family = "serif") +

  geom_col(aes(id, value, fill = fill), 
           show.legend = FALSE) +
  scale_fill_identity() +
  scale_y_continuous(limits = c(-5.5, 7), breaks = seq(0,5,1)) +
  scale_x_continuous(limits = c(-0.5, max(top_dogs$id)+1)) +
  ggimage::geom_image(aes(x = -0.5, y = -5.5, 
                          image = image), 
                      size = 0.24) +
  geom_text(aes(label = breed),
            x = -0.5, y = -1.7, size = 4, 
            fontface = 'bold', 
            family = "serif") +
  theme_void() +
  theme(plot.margin = margin(1.5,0,0,0, unit = "cm"))

这里需要注意的一点是 需要把添加狗的品种名的代码放到添加图片的代码的后面,要不然会有遮盖

image.png

同样的代码在话另外一个品种


image.png

最后来一个拼图

library(patchwork)
p1+p2
image.png

示例数据和代码可以在公众号后台留言20220210获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容