Java Stream API入门篇

转载文章

你可能没意识到Java对函数式编程的重视程度,看看Java 8加入函数式编程扩充多少功能就清楚了。Java 8之所以费这么大功夫引入函数式编程,原因有二:

  1. 代码简洁,函数式编程写出的代码简洁且意图明确,使用stream接口让你从此告别for循环。
  2. 多核友好,Java函数式编程使得编写并行程序从未如此简单,你需要的全部就是调用一下parallel()方法。

这一节我们学习stream,也就是Java函数式编程的主角。对于Java 7来说stream完全是个陌生东西,stream并不是某种数据结构,它只是数据源的一种视图。这里的数据源可以是一个数组,Java容器或I/O channel等。正因如此要得到一个stream通常不会手动创建,而是调用对应的工具方法,比如:

  • 调用Collection.stream()或者Collection.parallelStream()方法
  • 调用Arrays.stream(T[] array)方法

常见的stream接口继承关系如图:

Java_stream_Interfaces

图中4种stream接口继承自BaseStream,其中IntStream, LongStream, DoubleStream对应三种基本类型(int, long, double,注意不是包装类型),Stream对应所有剩余类型的stream视图。为不同数据类型设置不同stream接口,可以1.提高性能,2.增加特定接口函数。

WRONG_Java_stream_Interfaces

你可能会奇怪为什么不把IntStream等设计成Stream的子接口?毕竟这接口中的方法名大部分是一样的。答案是这些方法的名字虽然相同,但是返回类型不同,如果设计成父子接口关系,这些方法将不能共存,因为Java不允许只有返回类型不同的方法重载。

虽然大部分情况下stream是容器调用Collection.stream()方法得到的,但streamcollections有以下不同:

  • 无存储stream不是一种数据结构,它只是某种数据源的一个视图,数据源可以是一个数组,Java容器或I/O channel等。
  • 为函数式编程而生。对stream的任何修改都不会修改背后的数据源,比如对stream执行过滤操作并不会删除被过滤的元素,而是会产生一个不包含被过滤元素的新stream
  • 惰式执行stream上的操作并不会立即执行,只有等到用户真正需要结果的时候才会执行。
  • 可消费性stream只能被“消费”一次,一旦遍历过就会失效,就像容器的迭代器那样,想要再次遍历必须重新生成。

stream的操作分为为两类,中间操作(intermediate operations)和结束操作(terminal operations)**,二者特点是:

  1. 中间操作总是会惰式执行,调用中间操作只会生成一个标记了该操作的新stream,仅此而已。
  2. 结束操作会触发实际计算,计算发生时会把所有中间操作积攒的操作以pipeline的方式执行,这样可以减少迭代次数。计算完成之后stream就会失效。

如果你熟悉Apache Spark RDD,对stream的这个特点应该不陌生。

下表汇总了Stream接口的部分常见方法:

操作类型 接口方法
中间操作 concat() distinct() filter() flatMap() limit() map() peek()
skip() sorted() parallel() sequential() unordered()
结束操作 allMatch() anyMatch() collect() count() findAny() findFirst()
forEach() forEachOrdered() max() min() noneMatch() reduce() toArray()

区分中间操作和结束操作最简单的方法,就是看方法的返回值,返回值为stream的大都是中间操作,否则是结束操作。

stream方法使用

stream跟函数接口关系非常紧密,没有函数接口stream就无法工作。回顾一下:函数接口是指内部只有一个抽象方法的接口。通常函数接口出现的地方都可以使用Lambda表达式,所以不必记忆函数接口的名字。

forEach()

我们对forEach()方法并不陌生,在Collection中我们已经见过。方法签名为void forEach(Consumer<? super E> action),作用是对容器中的每个元素执行action指定的动作,也就是对元素进行遍历。

// 使用Stream.forEach()迭代
Stream<String> stream = Stream.of("I", "love", "you", "too");
stream.forEach(str -> System.out.println(str));

由于forEach()是结束方法,上述代码会立即执行,输出所有字符串。

filter()

Stream filter

函数原型为Stream<T> filter(Predicate<? super T> predicate),作用是返回一个只包含满足predicate条件元素的Stream

// 保留长度等于3的字符串
Stream<String> stream= Stream.of("I", "love", "you", "too");
stream.filter(str -> str.length()==3)
    .forEach(str -> System.out.println(str));

上述代码将输出为长度等于3的字符串youtoo。注意,由于filter()是个中间操作,如果只调用filter()不会有实际计算,因此也不会输出任何信息。

distinct()

Stream distinct

函数原型为Stream<T> distinct(),作用是返回一个去除重复元素之后的Stream

Stream<String> stream= Stream.of("I", "love", "you", "too", "too");
stream.distinct()
    .forEach(str -> System.out.println(str));

上述代码会输出去掉一个too之后的其余字符串。

sorted()

排序函数有两个,一个是用自然顺序排序,一个是使用自定义比较器排序,函数原型分别为Stream<T> sorted()Stream<T> sorted(Comparator<? super T> comparator)

Stream<String> stream= Stream.of("I", "love", "you", "too");
stream.sorted((str1, str2) -> str1.length()-str2.length())
    .forEach(str -> System.out.println(str));

上述代码将输出按照长度升序排序后的字符串,结果完全在预料之中。

map()

Stream map

函数原型为<R> Stream<R> map(Function<? super T,? extends R> mapper),作用是返回一个对当前所有元素执行执行mapper之后的结果组成的Stream。直观的说,就是对每个元素按照某种操作进行转换,转换前后Stream中元素的个数不会改变,但元素的类型取决于转换之后的类型。

Stream<String> stream = Stream.of("I", "love", "you", "too");
stream.map(str -> str.toUpperCase())
    .forEach(str -> System.out.println(str));

上述代码将输出原字符串的大写形式。

flatMap()

Stream flatMap

函数原型为<R> Stream<R> flatMap(Function<? super T,? extends Stream<? extends R>> mapper),作用是对每个元素执行mapper指定的操作,并用所有mapper返回的Stream中的元素组成一个新的Stream作为最终返回结果。说起来太拗口,通俗的讲flatMap()的作用就相当于把原stream中的所有元素都"摊平"之后组成的Stream,转换前后元素的个数和类型都可能会改变。

Stream<List<Integer>> stream = Stream.of(Arrays.asList(1,2), Arrays.asList(3, 4, 5));
stream.flatMap(list -> list.stream())
    .forEach(i -> System.out.println(i));

上述代码中,原来的stream中有两个元素,分别是两个List<Integer>,执行flatMap()之后,将每个List都“摊平”成了一个个的数字,所以会新产生一个由5个数字组成的Stream。所以最终将输出1~5这5个数字。

结语

截止到目前我们感觉良好,已介绍StreamAPI理解起来并不费劲儿。如果你就此以为函数式编程不过如此,恐怕是高兴地太早了。下一节对Stream规约操作的介绍将刷新你现在的认识。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容