The Numerics of GANs

https://arxiv.org/pdf/1705.10461.pdf

In this paper, we analyze the numerics of common algorithms for training Generative Adversarial Networks (GANs). Using the formalism of smooth two-player games we analyze the associated gradient vector field of GAN training objectives.

Our findings suggest that the convergence of current algorithms suffers due to two factors:

  • presence of eigenvalues of the Jacobian of the gradient vector field with zero real-part,
  • eigenvalues with big imaginary part.

Using these findings, we design a new algorithm that overcomes some of these limitations and has better convergence properties.

Experimentally, we demonstrate its superiority on training common GAN architectures and show convergence on GAN architectures that are known to be notoriously hard to train.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 我可以慢下来轻松享受 #幸福是需要修出来的~每天进步1%~幸福实修12班-22-张玉春-上海20170928/3 ...
    sarah4958阅读 2,532评论 0 2
  • 在大家都在看《速7》的今天,我开始看《速1》,没办法,完全年代断层,所以想着从头看起,串联下故事情节。其实以现在的...
    官先生阅读 1,198评论 0 1
  • man - format and display the on-line manual pages
    HiSea阅读 2,865评论 0 0

友情链接更多精彩内容