一、问题
下面是面试HashMap常见的一些问题
1、HashMap、HashTable、ConcurrentHashMap的区别是什么?
2、哪几个参数比较重要?
3、HashMap触发Resize操作后通过位运算来减少时间开销的大致流程是怎样的?
4、JDK的迭代过程中对HashMap的元素存储进行了结构上的优化,其存储方式与查询时间的复杂度如何?
由此可见,HashMap非常重要,今天着重讲讲HashMap的一些底层知识;
让我们来看看HashMap的源码;
======翻译不易,转载请注明出处======
二、总结
1、Hash Map基于实现了Map接口,提供了所有map的操作方法,并允许null的key和null的value;
2、HashMap类粗略的等同于Hashtable,但是它不是同步的(unsynchronized),并且允许nulls;该类不保证映射的顺序;尤其注意,不能保证保持固定不变的顺序;;
3、HashMap实现类为基本的操作(例如get,set方法)提供持久的表现;假设,hash功能将括号里的元素都分散了;集合中的迭代器要求一定倍数比例的HashMap类的实例(一定数量的括号)的容量能力来增加他的容量大小(key-value映射);因此,如果看重迭代器的性能的话,初始化时设置较小的容量非常重要(否则,加载器会非常慢);
4、一个HashMap的实例(instance)有两个参数会影响他的表现;即【初始化容量】和【加载因子】(load factor);【容量】是hash table中“篮子”的数量;这里可以把HashMap理解为一个超市里的“存储柜”,“存储柜”里有好多个篮子(寄存东西的小格子),篮子越多,装的东西越多,每个篮子都有一个编号,这个编号,就是key;每个篮子里装的东西,就是value;你告诉这个大箱子一个key,他就会根据你提供的key去获取篮子里的值;如果没有这个编号,他就获取不到任何东西;但是,篮子越多,对系统性能要求就越高,程序运行也就越慢,越卡;【初始化容量】是当hash table 创建时就直接决定了;【加载因子】是衡量hash table被允许在装满之前自动扩容的能力;当一个hash table中的许多entries键值对 超过【加载因子】的乘积(product不光有产品的意思,还有乘积的意思),并且当前容量时;hash table会重新哈希(rehashed)(就是说,内部数据构造器会重构);因此,hash table会获得大约2倍的容量;
5、作为一个普通的规则,默认的加载因子0.75会提供一个在时间和容量花费上很折中(tradeoff)的数值;大于0.75会减少空间上线消耗,但是会增加查找时间花费(大多数HashMap类的操作中的反射,包括get和set方法);当设置初始容量时,预计map中一定数量的键值对和加载因子必须纳入计算,才能最小化rehash操作的次数。如果【初始化容量】比键值对数目/加载因子的最大值还要大,那么,rehash操作将永远不能发生;
6、如果一个HashMap的实例中存储太多映射,创建一个足够大的容量值得HashMap来让键值对被有效地存储,而不是让他一直自动rehash来扩展表格;就是说,能一次性装进去,就一次性装,不要老是让Hash table 一次次扩容;**PS:就跟公司组织员工出去旅游一样,能一个大车将员工全部装走最好,即使空点座位,当然,座位空太多也浪费;不要一车装不下,还要打电话叫一个小车来,更不要出现再叫一个一样的大车过来这种情况;** 注意,使用许多键值对的key是同一个hashCode,绝对会降低hash table的性能;为了改善这种影响,当key是可比较的,这个类将会使用key值排序,来帮助断裂关系;
7、注意,HashMap的实现是异步的;如果多个线程同时访问一个hashMap,并且至少一个线程改变的这个map的结构,那么,其必须同步;(一个结构上的改变可以是任何操作,例如add或delete一个或多个键值对;仅仅更改与实例已经包含的键关联的值并不是结构修改);这主要是通过在一个对象上的自然压缩map同步完成的;
8、如果有这样一个对象存在,这个map必须使用synchronizedMap的打包(wrapper)方法;这个打包方法最好在创建的时候,来防止访问异步的map;
Map m = Collections.synchronizedMap(new HashMap(...));
9、迭代器会通过HashMap类中集合的视图方法返回是fail-fast:任何时候,当迭代器创建后,map的结构发生改变,除了通过迭代器自己的remove方法,其他情况,迭代器会抛出ConcurrentModificationException这个异常;因此,当面临并发改变,迭代器会快速失效并清除,而不是武断地冒险,防止以后在不确定的时间发生不确定的行为;
10、注意,迭代器的fail-fast行为不会保证,通俗地讲,不可能在异步并发修改出现,做出任何强制主动操作;fail-fast迭代器会在底层尽可能抛出【ConcurrentModificationException】异常;因此,它是否会错误地写程序取决于这个为了正确性而抛出的异常,迭代器的fail-fast行为必须在发现bugs时只有时使用;
三、附录
java.util.HashMap源代码;
/**
* Hash table based implementation of the <tt>Map</tt> interface. This
* implementation provides all of the optional map operations, and permits
* <tt>null</tt> values and the <tt>null</tt> key. (The <tt>HashMap</tt>
* class is roughly equivalent to <tt>Hashtable</tt>, except that it is
* unsynchronized and permits nulls.) This class makes no guarantees as to
* the order of the map; in particular, it does not guarantee that the order
* will remain constant over time.
*
* <p>This implementation provides constant-time performance for the basic
* operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
* disperses the elements properly among the buckets. Iteration over
* collection views requires time proportional to the "capacity" of the
* <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
* of key-value mappings). Thus, it's very important not to set the initial
* capacity too high (or the load factor too low) if iteration performance is
* important.
*
* <p>An instance of <tt>HashMap</tt> has two parameters that affect its
* performance: <i>initial capacity</i> and <i>load factor</i>. The
* <i>capacity</i> is the number of buckets in the hash table, and the initial
* capacity is simply the capacity at the time the hash table is created. The
* <i>load factor</i> is a measure of how full the hash table is allowed to
* get before its capacity is automatically increased. When the number of
* entries in the hash table exceeds the product of the load factor and the
* current capacity, the hash table is <i>rehashed</i> (that is, internal data
* structures are rebuilt) so that the hash table has approximately twice the
* number of buckets.
*
* <p>As a general rule, the default load factor (.75) offers a good
* tradeoff between time and space costs. Higher values decrease the
* space overhead but increase the lookup cost (reflected in most of
* the operations of the <tt>HashMap</tt> class, including
* <tt>get</tt> and <tt>put</tt>). The expected number of entries in
* the map and its load factor should be taken into account when
* setting its initial capacity, so as to minimize the number of
* rehash operations. If the initial capacity is greater than the
* maximum number of entries divided by the load factor, no rehash
* operations will ever occur.
*
* <p>If many mappings are to be stored in a <tt>HashMap</tt>
* instance, creating it with a sufficiently large capacity will allow
* the mappings to be stored more efficiently than letting it perform
* automatic rehashing as needed to grow the table. Note that using
* many keys with the same {@code hashCode()} is a sure way to slow
* down performance of any hash table. To ameliorate impact, when keys
* are {@link Comparable}, this class may use comparison order among
* keys to help break ties.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a hash map concurrently, and at least one of
* the threads modifies the map structurally, it <i>must</i> be
* synchronized externally. (A structural modification is any operation
* that adds or deletes one or more mappings; merely changing the value
* associated with a key that an instance already contains is not a
* structural modification.) This is typically accomplished by
* synchronizing on some object that naturally encapsulates the map.
*
* If no such object exists, the map should be "wrapped" using the
* {@link Collections#synchronizedMap Collections.synchronizedMap}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the map:<pre>
* Map m = Collections.synchronizedMap(new HashMap(...));</pre>
*
* <p>The iterators returned by all of this class's "collection view methods"
* are <i>fail-fast</i>: if the map is structurally modified at any time after
* the iterator is created, in any way except through the iterator's own
* <tt>remove</tt> method, the iterator will throw a
* {@link ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*
* @author Doug Lea
* @author Josh Bloch
* @author Arthur van Hoff
* @author Neal Gafter
* @see Object#hashCode()
* @see Collection
* @see Map
* @see TreeMap
* @see Hashtable
* @since 1.2
*/