Paper | ArcFace: Additive Angular Margin Loss for Deep Face Recognition

1 intro

  • we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition.

existing loss:

softmax loss:

  1. the size of linear transformation matrix W \in R^{d \times n} increases linearly with the n;
  2. learned features are separable for closed-set classification problem but not discriminative enough for open-set face recognition.

triplet loss:

  1. leading to a significant increase in the number of iteration steps
  2. semi-hard sample mining is a quite difficult problem for effective model training.

2 this paper

Propose a new ArcFace loss:

code:
https://github.com/deepinsight/insightface
https://github.com/deepinsight/insightface/tree/c2db41402c627cab8ea32d55da591940f2258276/recognition/arcface_torch
https://github.com/TreB1eN/InsightFace_Pytorch
https://github.com/ronghuaiyang/arcface-pytorch

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容