Elasticsearch

Elasticsearch 是一个兼有搜索引擎和NoSQL数据库功能的开源系统,基于Java/Lucene构建,可以用于全文搜索,结构化搜索以及近实时分析。可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架。 说明: Lucene:只是一个框架,要充分利用它的功能,需要使用JAVA,并且在程序中集成Lucene,学习成本高,Lucene确实非常复杂。 Elasticsearch 是 面向文档型数据库,这意味着它存储的是整个对象或者 文档,它不但会存储它们,还会为他们建立索引,这样你就可以搜索他们了

应用场景


  • 站内搜索:

    主要和 Solr 竞争,属于后起之秀

  • NoSQL json文档数据库:

    主要抢占 Mongo 的市场,它在读写性能上优于 Mongo ,同时也支持地理位置查询,还方便地理位置和文本混合查询,属于歪打正着 (对比测试参见: http://blog.quarkslab.com/mongodb-vs-elasticsearch-the-quest-of-the-holy-performances.html

  • 监控:

    统计以及日志类时间序的数据的存储和分析以及可视化,这方面是引领者

  • 国外:Wikipedia使用 ES 提供全文搜索并高亮关键字、StackOverflow结合全文搜索与地理位置查询、

    Github使用Elasticsearch检索1300亿行的代码

  • 国内:

    百度(在casio、云分析、网盟、预测、文库、直达号、钱包、风控等业务上都应用了ES,单集群每天导入30TB+数据,总共每天60TB+)、新浪 **,阿里巴巴、腾讯等公司均有对ES的使用

  • 使用比较广泛的平台ELK(ElasticSearch, Logstash, Kibana)

solr VS ES


  • Solr是Apache Lucene项目的开源企业搜索平台。其主要功能包括全文检索、命中标示、分面搜索、动态聚类、数据库集成,以及富文本(如Word、PDF)的处理。
  • Solr是高度可扩展的,并提供了分布式搜索和索引复制。Solr是最流行的企业级搜索引擎,Solr4 还增加了NoSQL支持。
  • Solr是用Java编写、运行在Servlet容器(如 Apache Tomcat 或Jetty)的一个独立的全文搜索服务器。 Solr采用了 Lucene Java 搜索库为核心的全文索引和搜索,并具有类似REST的HTTP/XML和JSON的API。
  • Solr强大的外部配置功能使得无需进行Java编码,便可对 其进行调整以适应多种类型的应用程序。Solr有一个插件架构,以支持更多的高级定制
  • Elasticsearch 与 Solr 的比较总结
    1. 二者安装都很简单
    2. Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能
    3. Solr 支持更多格式的数据,而 Elasticsearch 仅支持json文件格式
    4. Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供
    5. Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch
    6. Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用

核心概念


  • 集群(Cluster): 包含一个或多个具有相同 cluster.name 的节点.

    1. 集群内节点协同工作,共享数据,并共同分担工作负荷。
    2. 由于节点是从属集群的,集群会自我重组来均匀地分发数据.
    3. cluster Name是很重要的,因为每个节点只能是群集的一部分,当该节点被设置为相同的名称时,就会自动加入群集。
    4. 集群中通过选举产生一个mater节点,它将负责管理集群范畴的变更,例如创建或删除索引,添加节点到集群或从集群删除节点。master 节点无需参与文档层面的变更和搜索,这意味着仅有一个 master 节点并不会因流量增长而成为瓶颈。任意一个节点都可以成为 master 节点。我们例举的集群只有一个节点,因此它会扮演 master 节点的角色。
    5. 作为用户,我们可以访问包括 master 节点在内的集群中的任一节点。每个节点都知道各个文档的位置,并能够将我们的请求直接转发到拥有我们想要的数据的节点。无论我们访问的是哪个节点,它都会控制从拥有数据的节点收集响应的过程,并返回给客户端最终的结果。这一切都是由 Elasticsearch 透明管理的
  • 节点(node):一个节点是一个逻辑上独立的服务,可以存储数据,并参与集群的索引和搜索功能, 一个节点也有唯一的名字,群集通过节点名称进行管理和通信.

  • 索引(Index): 索引与关系型数据库实例(Database)相当。索引只是一个 逻辑命名空间,它指向一个或多个分片(shards),内部用Apache Lucene实现索引中数据的读写

  • 文档类型(Type):相当于数据库中的table概念。每个文档在ElasticSearch中都必须设定它的类型。文档类型使得同一个索引中在存储结构不同文档时,只需要依据文档类型就可以找到对应的参数映射(Mapping)信息,方便文档的存取

  • 文档(Document):相当于数据库中的row, 是可以被索引的基本单位。例如,你可以有一个的客户文档,有一个产品文档,还有一个订单的文档。文档是以JSON格式存储的。在一个索引中,您可以存储多个的文档。请注意,虽然在一个索引中有多分文档,但这些文档的结构是一致的,并在第一次存储的时候指定, 文档属于一种 类型(type),各种各样的类型存在于一个 索引 中。你也可以通过类比传统的关系数据库得到一些大致的相似之处:

    关系数据库       ⇒ 数据库 ⇒ 表    ⇒ 行    ⇒ 列(Columns)
    Elasticsearch  ⇒ 索引   ⇒ 类型  ⇒ 文档   ⇒ 字段(Fields)
    
  • Mapping: 相当于数据库中的schema,用来约束字段的类型,不过 Elasticsearch 的 mapping 可以自动根据数据创建

  • 分片(shard) :是 工作单元(worker unit) 底层的一员,用来分配集群中的数据,它只负责保存索引中所有数据的一小片。

    1. 分片是一个独立的Lucene实例,并且它自身也是一个完整的搜索引擎。
    2. 文档存储并且被索引在分片中,但是我们的程序并不会直接与它们通信。取而代之,它们直接与索引进行通信的
    3. 把分片想象成一个数据的容器。数据被存储在分片中,然后分片又被分配在集群的节点上。当你的集群扩展或者缩小时,elasticsearch 会自动的在节点之间迁移分配分片,以便集群保持均衡
    4. 分片分为 主分片(primary shard) 以及 从分片(replica shard) 两种。在你的索引中,每一个文档都属于一个主分片
    5. 从分片只是主分片的一个副本,它用于提供数据的冗余副本,在硬件故障时提供数据保护,同时服务于 搜索和检索这种只读请求
    6. 索引中的主分片的数量在索引创建后就固定下来了,但是从分片的数量可以随时改变。
    7. 一个索引默认设置了5个主分片,每个主分片有一个从分片对应

ES模块结构


  • 模块结构图如下

  • Gateway: 代表ES的持久化存储方式,包含索引信息,ClusterState(集群信息),mapping,索引碎片信息,以及transaction log等

    • 对于分布式集群来说,当一个或多个节点down掉了,能够保证我们的数据不能丢,最通用的解放方案就是对失败节点的数据进行复制,通过控制复制的份数可以保证集群有很高的可用性,复制这个方案的精髓主要是保证操作的时候没有单点,对一个节点的操作会同步到其他的复制节点上去。
    • ES一个索引会拆分成多个碎片,每个碎片可以拥有一个或多个副本(创建索引的时候可以配置),这里有个例子,每个索引分成3个碎片,每个碎片有2个副本,如下:
    $ curl -XPUT http://localhost:9200/twitter/ -d '
    index :
    number_of_shards : 3
    number_of_replicas : 2
    
    • 每个操作会自动路由主碎片所在的节点,在上面执行操作,并且同步到其他复制节点,通过使用“non blocking IO”模式所有复制的操作都是并行执行的,也就是说如果你的节点的副本越多,你网络上的流量消耗也会越大。复制节点同样接受来自外面的读操作,意义就是你的复制节点越多,你的索引的可用性就越强,对搜索的可伸缩行就更好,能够承载更多的操作
    • 第一次启动的时候,它会去持久化设备读取集群的状态信息(创建的索引,配置等)然后执行应用它们(创建索引,创建mapping映射等),每一次shard节点第一次实例化加入复制组,它都会从长持久化存储里面恢复它的状态信息
  • Discovery

    1. 节点启动后先ping(这里的ping是 Elasticsearch 的一个RPC命令。如果 discovery.zen.ping.unicast.hosts 有设置,则ping设置中的host,否则尝试ping localhost 的几个端口, Elasticsearch 支持同一个主机启动多个节点)
    2. Ping的response会包含该节点的基本信息以及该节点认为的master节点
    3. 选举开始,先从各节点认为的master中选,规则很简单,按照id的字典序排序,取第一个
    4. 如果各节点都没有认为的master,则从所有节点中选择,规则同上。这里有个限制条件就是 discovery.zen.minimum_master_nodes,如果节点数达不到最小值的限制,则循环上述过程,直到节点数足够可以开始选举
    5. 最后选举结果是肯定能选举出一个master,如果只有一个local节点那就选出的是自己
    6. 如果当前节点是master,则开始等待节点数达到 minimum_master_nodes,然后提供服务, 如果当前节点不是master,则尝试加入master.
    7. ES支持任意数目的集群(1-N),所以不能像 Zookeeper/Etcd 那样限制节点必须是奇数,也就无法用投票的机制来选主,而是通过一个规则,只要所有的节点都遵循同样的规则,得到的信息都是对等的,选出来的主节点肯定是一致的. 但分布式系统的问题就出在信息不对等的情况,这时候很容易出现脑裂(Split-Brain)的问题,大多数解决方案就是设置一个quorum值,要求可用节点必须大于quorum(一般是超过半数节点),才能对外提供服务。而 Elasticsearch 中,这个quorum的配置就是 discovery.zen.minimum_master_nodes 。
  • memcached

    1. 通过memecached协议来访问ES的接口,支持二进制和文本两种协议.通过一个名为transport-memcached插件提供
    2. Memcached命令会被映射到REST接口,并且会被同样的REST层处理,memcached命令列表包括:get/set/delete/quit
  • River : 代表es的一个数据源,也是其它存储方式(如:数据库)同步数据到es的一个方法。它是以插件方式存在的一个es服务,通过读取river中的数据并把它索引到es中,官方的river有couchDB的,RabbitMQ的,Twitter的,Wikipedia的,river这个功能将会在后面的文件中重点说到

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容

  • 十一结束后来到学校就开始看特别火的电视剧《那年花开月正圆》,很久没有看电视剧了,乍一看还是很吸引人,也跟着...
    嗨喽boy阅读 625评论 0 1
  • 每天醒来的第一件事就是满心欢喜的趴在窗子上望一眼,可是经常看见的都是“烟雨朦胧”。不知从几何起,天不再是小时候的那...
    我的书与路阅读 237评论 1 0
  • 在请求别人帮助之前,先想想自己是否已拼尽全力?如果没有,那么在你拼尽全力之前,最好先闭上嘴。闭上嘴有好很多种方式,...
    橙飞飞阅读 467评论 0 2
  • 文章摘要1、针对接口搭建的框架,才能更好的兼容变化。2、volley中那些设计原则以及模式的身影。 附:获取Vol...
    Android那些事儿阅读 806评论 0 50
  • 2016年目标: 考上公务员,看一次演唱会,自助游至少一次,培养一个爱好,读二十本书,49斤,学习英语,为家人买保...
    吴小懒jume阅读 192评论 0 0