Rxjava分析(一)map变换原理

map变换

从Obserable事件发出开始,每一次map操作符的调用,就是将上一个的Obserable事件用ObserableMap包装了一次,而ObserableMap继承自抽象类Obserable,本质是静态代理模式。
map变换的精华也就在ObservableMap这个类中:

public final class ObservableMap<T, U> extends AbstractObservableWithUpstream<T, U> {
    final Function<? super T, ? extends U> function;

    public ObservableMap(ObservableSource<T> source, Function<? super T, ? extends U> function) {
        super(source);
        this.function = function;
    }

    public void subscribeActual(Observer<? super U> t) {
        this.source.subscribe(new ObservableMap.MapObserver(t, this.function));
    }

    static final class MapObserver<T, U> extends BasicFuseableObserver<T, U> {
        final Function<? super T, ? extends U> mapper;

        MapObserver(Observer<? super U> actual, Function<? super T, ? extends U> mapper) {
            super(actual);
            this.mapper = mapper;
        }

        public void onNext(T t) {
            if(!this.done) {
                if(this.sourceMode != 0) {
                    this.actual.onNext((Object)null);
                } else {
                    Object v;
                    try {
                        v = ObjectHelper.requireNonNull(this.mapper.apply(t), "The mapper function returned a null value.");
                    } catch (Throwable var4) {
                        this.fail(var4);
                        return;
                    }

                    this.actual.onNext(v);
                }
            }
        }

        public int requestFusion(int mode) {
            return this.transitiveBoundaryFusion(mode);
        }

        @Nullable
        public U poll() throws Exception {
            T t = this.qs.poll();
            return t != null?ObjectHelper.requireNonNull(this.mapper.apply(t), "The mapper function returned a null value."):null;
        }
    }
}

这段实例代码来自https://www.jianshu.com/p/b3b0170152ff

Observable.just("http://img.taopic.com/uploads/allimg/130331/240460-13033106243430.jpg")
                .map(new Function<String, Bitmap>() {
                    @Override
                    public Bitmap apply(String urlPath) throws Exception {
                        URL url = new URL(urlPath);
                        HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
                        InputStream inputStream = urlConnection.getInputStream();
                        Bitmap bitmap = BitmapFactory.decodeStream(inputStream);
                        return bitmap;
                    }
                })
                .map(new Function<Bitmap, Bitmap>() {
                    @Override
                    public Bitmap apply(@NonNull Bitmap bitmap) throws Exception {
                        bitmap = createWatermark(bitmap, "RxJava2.0");
                        return bitmap;
                    }
                })
                .map(new Function<Bitmap, Bitmap>() {
                    @Override
                    public Bitmap apply(Bitmap bitmap) throws Exception {
                        return bitmap;
                    }
                })
                .subscribe(new Consumer<Bitmap>() {
                    @Override
                    public void onNext(final Bitmap bitmap) {
                        mImage.setImageBitmap(bitmap);
                    }
                });
image.png

上图的流程:自上而下发射事件(map变换),再自下而上订阅事件(subscribe),最后自上而下正真执行事件function(onNext方法)。

首先,由Obserable.just生成一个事件源,然后通过map变换,将事件源向下发射,这个过程是怎样的呢?让我们看下
Obserable类中的map方法

   @SchedulerSupport(SchedulerSupport.NONE)
    public final <R> Observable<R> map(Function<? super T, ? extends R> mapper) {
        ObjectHelper.requireNonNull(mapper, "mapper is null");
        return RxJavaPlugins.onAssembly(new ObservableMap<T, R>(this, mapper));
    }

RxJavaPlugins.onAssembly方法我们不需关注,可以直接简化成return new ObservableMap<T, R>(this, mapper);
参数this就是Obserable.just生成的最初的事件源
ObservableMap构造方法如下:

    public ObservableMap(ObservableSource<T> source, Function<? super T, ? extends U> function) {
        super(source);
        this.function = function;
    }

ObserverableMap继承自AbstractObservableWithUpstream:

abstract class AbstractObservableWithUpstream<T, U> extends Observable<U> implements HasUpstreamObservableSource<T> {
    protected final ObservableSource<T> source;

    AbstractObservableWithUpstream(ObservableSource<T> source) {
        this.source = source;
    }

    public final ObservableSource<T> source() {
        return this.source;
    }
}

结合起来看,就是ObserverableMap中保存了上游的Observerable事件源,以及变换方法(就是map方法中传入的function)。
多次map变换,也就是重复以上这一过程,不断的将上游的Observerable事件源包装为新的ObserverableMap。

最终,事件的执行需要我们subscribe消费者:Observable.subscribe(subscriber)
此时的Observable其实是ObservableMap,subscibe其实调用的是ObservableMap中的subscribeActual方法。为什么是这样调用的,回到ObservableMap父类Observable中看下就清楚了:

    @SchedulerSupport("none")
    public final void subscribe(Observer<? super T> observer) {
        ObjectHelper.requireNonNull(observer, "observer is null");

        try {
            observer = RxJavaPlugins.onSubscribe(this, observer);
            ObjectHelper.requireNonNull(observer, "Plugin returned null Observer");
            this.subscribeActual(observer);
        } catch (NullPointerException var4) {
            throw var4;
        } catch (Throwable var5) {
            Exceptions.throwIfFatal(var5);
            RxJavaPlugins.onError(var5);
            NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS");
            npe.initCause(var5);
            throw npe;
        }
    }

    protected abstract void subscribeActual(Observer<? super T> var1);

回到ObservableMap的subscribeActual方法中,回想下java的多态,继续看:

    @Override
    public void subscribeActual(Observer<? super U> t) {
        source.subscribe(new MapObserver<T, U>(t, function));
    }

拆开来看其实分为两步:
1.Observer observer = new MapObserver<T, U>(t, function)
这里,生成Observer的代理类MapObserver,同时将之前ObservableMap中保存的变换方法传进去。
2.source.subscribe(observer )
source为之前ObservableMap中保存的上游Observable事件,将下游的Observer交给上游处理。
总体上来看,就是自下而上,每遇到ObservableMap就重复一下这个订阅过程。一直到ObservableJust,即我们的事件源,看下ObservableJust,它也是Observable的子类,同时也重写了subscribeActual方法:

    protected void subscribeActual(Observer<? super T> s) {
        ScalarDisposable<T> sd = new ScalarDisposable(s, this.value);
        s.onSubscribe(sd);
        sd.run();
    }

ScalarDisposable又是一个静态代理,它代理了那个代理了好多层的Observer,sd.run()方法里面调用了代理了好多层的Observer的onNext代理方法。

     static final class MapObserver<T, U> extends BasicFuseableObserver<T, U> {
        final Function<? super T, ? extends U> mapper;

        MapObserver(Observer<? super U> actual, Function<? super T, ? extends U> mapper) {
            super(actual);
            this.mapper = mapper;
        }

        public void onNext(T t) {
            if(!this.done) {
                if(this.sourceMode != 0) {
                    this.actual.onNext((Object)null);
                } else {
                    Object v;
                    try {
                        v = ObjectHelper.requireNonNull(this.mapper.apply(t), "The mapper function returned a null value.");
                    } catch (Throwable var4) {
                        this.fail(var4);
                        return;
                    }

                    this.actual.onNext(v);
                }
            }
        }

        public int requestFusion(int mode) {
            return this.transitiveBoundaryFusion(mode);
        }

        @Nullable
        public U poll() throws Exception {
            T t = this.qs.poll();
            return t != null?ObjectHelper.requireNonNull(this.mapper.apply(t), "The mapper function returned a null value."):null;
        }
    }

onNext方法内部,
首先this.mapper.apply(t),执行了变换方法。
继续又调用了下游Observer的onNext方法。
这样就一层一层自上而下的执行onNext方法,将事件串成流那样执行了。

总结

整体流程分析下来,我们发现ObservableMap这个类太关键了,它持有者上游的Obserable事件源以及变换方法,同时它的subscribeActual方法中,将下游的Observer代理成MapObserver。MapObserver是ObservableMap的内部类,代理方法onNext里,执行了变换方法。onNext的执行是在ObserableJust的subscribeActual触发的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容