leetcode 497 非重叠矩形中的随机点

关键词: 前缀和 二分 概率
题目描述

给定多个不重叠的矩形(矩形的边与坐标轴平行)
对于每个矩形中的点(x,y都为整数)都有相同的概率在pick接口中获取

思路分析
思考: 是什么概率类型?

样本空间有限,是古典概型

思考: 如何模拟均匀分布?

伪随机生成函数即可

思考:得到的随机数与点如何对应?

暴力地保存每个点肯定不合适,不妨先确定是哪个矩形内,再确定矩形内的点

由以上分析得:

  1. 等概率获取表明每个区域获取的可能性与矩形区域中的样本点的数目有关

  2. 总的可能样本数目是所有区域的样本数目之和

​ 设矩形总个数为n,矩形面积分别为A_0,A_1,...,A_{n-1},总的样本数目为m,那么每个矩形区域被选择到的概率分别为:\dfrac{A_0}{m},\dfrac{A_1}{m},...,\dfrac{A_{n-1}}{m}那么可以选取一个[0,m-1]区间的一个随机数,[0,A_0)区间表示矩形0,[A_0,A_1)区间表示矩形1,依次类推。这个过程就得到了选取哪个矩形区域

​ 由于每个矩形区域中的点被选取的概率相同,不妨在区域内再随机选取x,y,即是结果。

代码实现
class Solution {
public:
    vector<vector<int>> recs;   // 保存区间
    vector<long long> t;    // 前缀和
    Solution(vector<vector<int>>& rects) {
        recs=rects;
        int n = rects.size();
        t.resize(n+1);
        t[0]=0;
        for(int i=0;i<n;i++){
            t[i+1]=t[i]+(rects[i][2]-rects[i][0]+1) * (rects[i][3]-rects[i][1]+1);
            //cout<<t[i+1]<<endl;
        }
    }
    vector<int> pick() {
        int n = recs.size();
        int ans=rand()%t[n];    // [0,m)的随机数
        //return {ans};
        int l=0;
        int r = n;
        while(l<r){     // 找到矩形的index
            int m = (r+l)/2;
            if(t[m]>ans) r=m;
            else l=m+1;
        }
        int x1 = recs[l-1][0];
        int y1 = recs[l-1][1];
        int x2 = recs[l-1][2];
        int y2 = recs[l-1][3];
        int xr = rand() %(x2-x1+1)+x1;      // 在矩形内随机x
        int yr = rand() %(y2-y1+1)+y1;      // 在矩形内随机y
        return {xr,yr};
    }
};
小结
  1. 如何模拟具有不同概率的古典概型?

  2. 为什么要使用前缀和?

  3. 二分模板写法?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351