scRNA-使用sctransform去除批次效应

刘小泽写于19.10.10
上一次介绍了使用Seurat 的merge函数来合并4个样本(各有2个生物学重复)的8组数据,但是merge只是将原始数据简单混合起来,谁也不知道混合后的结果是不是引入了批次效应

关于去除多组数据中的批次效应,有多种算法,如Seurat包的CCA(canonical correlation analysis)、LIGER的NMF(non-negative matrix factorization)、Scran包的mnnCorrect、Seurat包的sctransform

这次就来看看sctransform是如何使用的

前言

目前教程更新于2019-10-08

https://satijalab.org/seurat/v3.1/sctransform_vignette.html

它的开发者曾说:

还支持管道单行命令:

之前利用常规流程处理,得到的UMAP结果是:

现在再使用sctransform看看结果

第一步:加载10X原始数据,创建对象

# 原始数据在:https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
pbmc_data <- Read10X(data.dir = "./filtered_gene_bc_matrices/hg19/")
pbmc <- CreateSeuratObject(counts = pbmc_data)

第二步:记录线粒体信息,一会进行校正

pbmc <- PercentageFeatureSet(pbmc, pattern = "^MT-", col.name = "percent.mt")

pbmc <- SCTransform(pbmc, vars.to.regress = "percent.mt", verbose = FALSE)
  • 别看SCTransform只有一个单独的函数,其实它做了:NormalizeDataScaleDataFindVariableFeatures 的事情,并且也支持ScaleData的vars.to.regress

  • 运行的结果存储在:pbmc@assays$SCT) 或者pbmc[["SCT"]]

    > dim(pbmc@assays$RNA)
    [1] 32738  2700
    > dim(pbmc@assays$SCT)
    [1] 12572  2700
    > pbmc@assays$SCT
    Assay data with 12572 features for 2700 cells
    Top 10 variable features:
     S100A9, GNLY, LYZ, S100A8, NKG7, FTL, GZMB, IGLL5, CCL5, FTH1 
    

第三步:PCA+UMAP降维,然后聚类

pbmc <- RunPCA(pbmc, verbose = FALSE)
pbmc <- RunUMAP(pbmc, dims = 1:30, verbose = FALSE)

pbmc <- FindNeighbors(pbmc, dims = 1:30, verbose = FALSE)
pbmc <- FindClusters(pbmc, verbose = FALSE)
DimPlot(pbmc, label = TRUE) + NoLegend()

得到的结果是:

注意到:这里的FindNeighbors使用了更多的主成分(30个),而之前常规分析中根据ElbowPlot(pbmc)结果仅使用了10个主成分就得了不错的结果。

这是因为:

  • 在常规分析中,使用少量的PC既能关注到关键的生物学差异,又能够不引入更多的技术差异,相当于一种保守性的做法。是的,它会失去一些生物差异信息,但是同时又在常规手段中比较安全。
  • 这里使用的sctransform,显然更“自信”一些,它认为:我很厉害,我的归一化、标准化都做得不错,多给我一些PCs吧,我能提取更多的生物差异,并且兼顾不引入技术误差

另外,常规分析中的FindVariableFeatures默认得到2000个高变异基因(HVGs),而这里的sctransform因为使用了更多的PCs,算法也更优化,所以默认会得到3000个HVGs。sctransform认为:新增加的这1000个基因就包含了之前没有检测到的微弱的生物学差异。而且,即使使用全部的全部的基因去做下游分析,得到的结果也是和sctransform这3000个基因的结果相似

综合:单行代码实现分析

因为SCTransform对参数的要求不是很多,一般默认参数就能应付大多数情况,因此作者也给出了单行从创建对象到最后分群的结果

pbmc <- CreateSeuratObject(pbmc_data) %>% PercentageFeatureSet(pattern = "^MT-", col.name = "percent.mt") %>% 
    SCTransform(vars.to.regress = "percent.mt") %>% RunPCA() %>% FindNeighbors(dims = 1:30) %>% 
    RunUMAP(dims = 1:30) %>% FindClusters()

关于SCTransform得到的结果

作为了解即可:它利用了正则化负二项分布(regularized negative binomial regression)计算了技术噪音模型,得到的残差是归一化值,有正有负。正值表示:考虑到细胞群体中基因的平均表达量和细胞测序深度,某个细胞的某个基因所包含的UMIs比预测值要高。

它的结果有以下几种,不过都包含在pbmc[["SCT"]]
  • pbmc[["SCT"]]@scale.data :包含了残差数据,用作PCA的输入。这个数据不是稀疏矩阵,因此会占用大量内存。不过SCTransform函数计算的时候,为了节省内存,默认使用了return.only.var.genes = TRUE ,只保留差异基因的结果
  • pbmc[["SCT"]]@counts :包含了校正后的UMI count值
  • pbmc[["SCT"]]@data:包含了上面count值的log-normalized结果,有利于后面可视化
  • 目前可以使用pbmc[["SCT"]]@data结果进行差异分析,但实际上,官方更推荐直接使用残差值pbmc[["SCT"]]@scale.data 【这个功能目前还不支持,会在后面的Seurat版本中更新】

第四步:使用一些权威的marker对细胞群体注释

这些marker的选择:

  • CD8 T cell populations (naive, memory, effector), based on CD8A, GZMK, CCL5, GZMK expression
  • CD4 T cell populations (naive, memory, IFN-activated) based on S100A4, CCR7, IL32, and ISG15
  • Additional developmental sub-structure in B cell cluster, based on TCL1A, FCER2
  • Additional separation of NK cells into CD56dim vs. bright clusters, based on XCL1 and FCGR3A
VlnPlot(pbmc, features = c("CD8A", "GZMK", "CCL5", "S100A4", "ANXA1", "CCR7", "ISG15", "CD3D"), 
    pt.size = 0.2, ncol = 4)

FeaturePlot(pbmc, features = c("CD8A", "GZMK", "CCL5", "S100A4", "ANXA1", "CCR7"), pt.size = 0.2, 
    ncol = 3)

FeaturePlot(pbmc, features = c("CD3D", "ISG15", "TCL1A", "FCER2", "XCL1", "FCGR3A"), pt.size = 0.2, 
    ncol = 3)

欢迎关注我们的公众号~_~  
我们是两个农转生信的小硕,打造生信星球,想让它成为一个不拽术语、通俗易懂的生信知识平台。需要帮助或提出意见请后台留言或发送邮件到jieandze1314@gmail.com

Welcome to our bioinfoplanet!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343