Pagerank算法

一. Pagerank介绍
PageRank算法以前就是Google的网页排序算法。PageRank算法,对每个目标网页进行附上权值,权值大的就靠前显示,权值小的就靠后显示。PageRank算法就是给每个网页附加权值的。PageRank算法借鉴学术界论文重要性的评估方法:谁被引用的次数多,谁就越重要。
注:PageRank算法不单单是按照“被索引数”来给网页付权值的,用PR值表示每个网页被PageRank算法附加的权值。

二. PageRank算法的核心细想
(1)如果一个网页被很多其他网页链接到的话,说明这个网页比较重要,也就是PageRank值会相对较高
(2)如果一个PageRank值很高的网页链接到一个其他的网页,那么被链接到的网页的PageRank值会相应地因此而提高

三. 基本概念
(1)出链

如果在网页A中附加了网页B的超链接B-Link,用户浏览网页A时可以点击B-Link然后进入网页B。上面这种A附有B-Link这种情况表示A出链B。可知,网页A也可以出链C,如果A中也附件了网页C的超链接C-Link。

(2)入链

上面通过点击网页A中B-Link进入B,表示由A入链B。如果用户自己在浏览器输入栏输入网页B的URL,然后进入B,表示用户通过输入URL入链B

(3)无出链

如果网页A中没有附加其他网页的超链接,则表示A无出链

(4)只对自己出链

如果网页A中没有附件其他网页的超链接,而只有他自己的超链接A-Link,则表示A只对自己出链

(5)PR值

一个网页的PR值,概率上理解就是此网页被访问的概率,PR值越高其排名越高。

四. 几种网页出入链关系
case1:网页都有出入链

case1

此种情况下的网页A的PR值计算公式为:

case2:存在没有出链的网页


case2

网页C是没有出链。因为C没有出链,所以对A,B,D网页没有PR值的贡献。PageRank算法的策略:从数学上考虑,为了满足Markov链,设定C对A,B,C,D都有出链(也对他自己也出链~)。你也可以理解为:没有出链的网页,我们强制让他对所有的网页都有出链,即让他对所有网页都有PR值贡献。
此种情况PR(A)的计算公式:


case3:存在只对自己出链的网页


case3

C是只对自己出链的网页。

此时访问C时,不会傻乎乎的停留在C页面,一直点击C-Link循环进入C,即C网页只对自己的网页PR值有贡献。正常的做法是,进入C后,存在这种情况:在地址输入栏输入A/B/C/D的URL地址,然后跳转到A/B/C/D进行浏览,这就是PageRank算法解决这种情况的策略:设定存在一定概率为α,用户在地址栏输入A/B/C/D地址,然后从C跳转到A/B/C/D进行浏览。
此时PR(A)的计算公式为:


五. 算法公式
一般情况下,一个网页的PR值计算公式为:


注:Mpi是有出链到pi的所有网页集合,L(pj)是有网页pj的出链总数,N是网页总数,α一般取值为0.85

所有网页PR值一直迭代计算,停止直到下面两种情况之一发生:每个网页的PR值前后误差小于自定义误差阈值,或者迭代次数超过了自定义的迭代次数阈值

六. PageRank算法的缺点
这是一个天才的算法,原理简单但效果惊人。然而,PageRank算法还是有一些弊端。

第一,没有区分站内导航链接。很多网站的首页都有很多对站内其他页面的链接,称为站内导航链接。这些链接与不同网站之间的链接相比,肯定是后者更能体现PageRank值的传递关系。

第二,没有过滤广告链接和功能链接(例如常见的“分享到微博”)。这些链接通常没有什么实际价值,前者链接到广告页面,后者常常链接到某个社交网站首页。

第三,对新网页不友好。一个新网页的一般入链相对较少,即使它的内容的质量很高,要成为一个高PR值的页面仍需要很长时间的推广。

针对PageRank算法的缺点,有人提出了TrustRank算法。其最初来自于2004年斯坦福大学和雅虎的一项联合研究,用来检测垃圾网站。TrustRank算法的工作原理:先人工去识别高质量的页面(即“种子”页面),那么由“种子”页面指向的页面也可能是高质量页面,即其TR值也高,与“种子”页面的链接越远,页面的TR值越低。“种子”页面可选出链数较多的网页,也可选PR值较高的网站。

TrustRank算法给出每个网页的TR值。将PR值与TR值结合起来,可以更准确地判断网页的重要性。

补充:
谷歌用PR值来划分网页的等级,有0~10级,一般4级以上的都是比较好的网页了。谷歌自己PR值为9,百度也是9,博客园的PR值则为6。

如今PR值虽不如以前重要了(没有区分页面内的导航链接、广告链接和功能链接导致PR值本身能够反映出的网页价值不精确,并且对新网页不友好),但是流量交易里PR值还是个很重要的参考因素。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容