蒙特卡罗模拟中的采样方法

背景知识

随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation)。这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆、冯.诺依曼、费米、费曼、Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早的计算机上进行编程实现。

蒙特卡洛数值积分

如果我们要求𝑓(𝑥)的积分,可化成\int_a^b f(x)=\int_a^b \frac{f(x)}{p(x)}p(x)dxg(x)=\frac{f(x)}{p(x)}p(x)为x的概率密度函数,在[a,b]区间内取n个样本[x1,x2,x3....xn],则
\int_a^b f(x)=\int_a^b \frac{f(x)}{p(x)}p(x)dx=\frac{g(x_1)+g(x_2)+...+g(x_n)}{n}
蒙特卡洛数值积分将积分的计算转化为期望的计算,进而可以用统计量来得到。
然而有一个重要的问题——怎么在给定的区间内采样?

采样就是给定一个概率分布,根据该分布从样本空间中生成样本。

比如你可以通过抛硬币近似完成对p=\frac12的0-1分布的采样。再举个最简单的通过计算机程序对低维离散样本空间进行采样的例子,比如一维变量X取值的样本空间为{1,2,3},且取1,2,3三个值的概率分别为\frac12,\frac14,\frac14。那么这时候你要如何从这个分布中进行采样?我想大多数人自己都写过这样简单的程序,首先根据各离散取值的概率大小对[0,1]区间进行等比例划分,如划分为[0,0.5],[0,5,0.75],[0.75,1]这三个区间,再通过计算机产生[0,1]之间的伪随机数,根据伪随机数的落点即可完成一次采样。

那么问题来了,如果我们要对一个连续分布(即给定一个已知的概率密度函数p(x))进行采样,那么上述对[0,1]区间划分的方式显然就失效了(当然,最简单的方法,可能会有人考虑将概率密度函数均匀分段积分,然后继续采用之前的做法,不过这样永远只能得到近似的采样结果,永远不可能得到原始分布的采样结果,并且高维情况下积分的计算代价以及是否可积本身也是个问题)。所以,在给定概率密度函数的连续分布下要如何采样呢?

对于概率密度函数的采样,相信一些人可以很直观的想到可以利用累积分布函数(P(x<t),即\int_{-\infty}^tp(x)dx,即在[0,1]间随机生成一个数a,然后求使得P(x<t)=a成立的t,t即可以视作从该分部中得到的一个采样结果。

采样方法

(0)Box-Muller方法

用平均分布的一对随机变量生成高斯分布的随机变量,如果随机变量 U1,U2 独立且U1,U2∼Uniform[0,1]
Z_0=\sqrt{-2lnU_1}cos(2\pi U_2), Z_1=\sqrt{-2lnU_1}cos(2\pi U_2)
Z_0,Z_1满足高斯分布。

但是这是基于累积分布函数可积,且P(x<t)=a可解,即累积分布函数具有反函数的条件下的。假如累积分布函数没有反函数呢?

(1)拒绝采样

很多实际问题中,既然 p(x) 太复杂在程序中没法直接采样,那么我们可以设定一个程序可抽样的分布 q(x) 比如高斯分布,然后按照一定的方法拒绝某些样本,达到接近 p(x) 分布的目的,其中q(x)叫做 proposal distribution 。


拒绝采样

具体操作如下,设定一个方便抽样的函数 q(x),以及一个常量 k,使得 p(x) 总在 kq(x) 的下方。

  1. x 轴方向:从 q(x) 分布抽样得到 a。
  2. y 轴方向:从均匀分布(0, kq(a)) 中抽样得到 u。
  3. 如果刚好落到灰色区域: u > p(a), 拒绝, 否则接受这次抽样。
  4. 重复以上过程

问题:在高维的情况下,Rejection Sampling 会出现两个问题,第一是合适的 q 分布比较难以找到,第二是很难确定一个合理的 k 值。这两个问题会导致拒绝率很高,无用计算增加。

(2)MCMC采样

从马尔可夫链到PageRank再到RWR
马尔可夫链蒙特卡洛(MCMC)采样

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353