资料:
http://blog.csdn.net/guolin_blog/article/details/11711405
http://blog.csdn.net/lmj623565791/article/details/38614699
AsyncTask的基本用法
三个泛型参数
首先来看一下AsyncTask的基本用法,由于AsyncTask是一个抽象类,所以如果我们想使用它,就必须要创建一个子类去继承它。在继承时我们可以为AsyncTask类指定三个泛型参数,这三个参数的用途如下:
- Params
在执行AsyncTask时需要传入的参数,可用于在后台任务中使用。 - Progress
后台任务执行时,如果需要在界面上显示当前的进度,则使用这里指定的泛型作为进度单位。 - Result
当任务执行完毕后,如果需要对结果进行返回,则使用这里指定的泛型作为返回值类型。
四个经常需要重写的方法
- onPreExecute()
这个方法会在后台任务开始执行之间调用,用于进行一些界面上的初始化操作,比如显示一个进度条对话框等。 - doInBackground(Params...)
这个方法中的所有代码都会在子线程中运行,我们应该在这里去处理所有的耗时任务。任务一旦完成就可以通过return语句来将任务的执行结果进行返回,如果AsyncTask的第三个泛型参数指定的是Void,就可以不返回任务执行结果。注意,在这个方法中是不可以进行UI操作的,如果需要更新UI元素,比如说反馈当前任务的执行进度,可以调用publishProgress(Progress...)方法来完成。 - onProgressUpdate(Progress...)
当在后台任务中调用了publishProgress(Progress...)方法后,这个方法就很快会被调用,方法中携带的参数就是在后台任务中传递过来的。在这个方法中可以对UI进行操作,利用参数中的数值就可以对界面元素进行相应的更新。 - onPostExecute(Result)
当后台任务执行完毕并通过return语句进行返回时,这个方法就很快会被调用。返回的数据会作为参数传递到此方法中,可以利用返回的数据来进行一些UI操作,比如说提醒任务执行的结果,以及关闭掉进度条对话框等。
示例
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
protected Long doInBackground(URL... urls) {
int count = urls.length;
long totalSize = 0;
for (int i = 0; i < count; i++) {
totalSize += Downloader.downloadFile(urls[i]);
publishProgress((int) ((i / (float) count) * 100));
// Escape early if cancel() is called
if (isCancelled()) break;
}
return totalSize;
}
protected void onProgressUpdate(Integer... progress) {
setProgressPercent(progress[0]);
}
protected void onPostExecute(Long result) {
showDialog("Downloaded " + result + " bytes");
}
}
源码解析
从我们的执行异步任务的起点开始,进入execute方法:
/**
* Executes the task with the specified parameters. The task returns
* itself (this) so that the caller can keep a reference to it.
*/
@MainThread
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}
/**
* Executes the task with the specified parameters. The task returns
* itself (this) so that the caller can keep a reference to it.
*/
@MainThread
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
//设置当前AsyncTask的状态为RUNNING,上面的switch也可以看出,每个异步任务在完成前只能执行一次。
mStatus = Status.RUNNING;
//执行了onPreExecute(),当前依然在UI线程,所以我们可以在其中做一些准备工作。
onPreExecute();
//将我们传入的参数赋值给了mWorker.mParams
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}
mWorker找到这个类:
private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
Params[] mParams;
}
可以看到是Callable的子类,且包含一个mParams用于保存我们传入的参数,下面看初始化mWorker的代码:
/**
* Creates a new asynchronous task. This constructor must be invoked on the UI thread.
*/
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
Result result = doInBackground(mParams);
Binder.flushPendingCommands();
return postResult(result);
}
};
//任务执行结束会调用:postResultIfNotInvoked(get());
//get()表示获取mWorker的call的返回值,即Result.然后看postResultIfNotInvoked方法
mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
postResultIfNotInvoked(get());
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occurred while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
}
}
};
}
可以看到mWorker在构造方法中完成了初始化,并且因为是一个抽象类,在这里new了一个实现类,实现了call方法,call方法中设置mTaskInvoked=true,且最终调用doInBackground(mParams)方法,并返回Result值作为参数给postResult方法.可以看到我们的doInBackground出现了,下面继续看:
private static Handler getHandler() {
synchronized (AsyncTask.class) {
if (sHandler == null) {
sHandler = new InternalHandler();
}
return sHandler;
}
}
private Result postResult(Result result) {
@SuppressWarnings("unchecked")
Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
new AsyncTaskResult<Result>(this, result));
message.sendToTarget();
return result;
}
可以看到postResult中出现了我们熟悉的异步消息机制,传递了一个消息message, message.what为MESSAGE_POST_RESULT;message.object= new AsyncTaskResult(this,result);
private static class AsyncTaskResult<Data> {
final AsyncTask mTask;
final Data[] mData;
AsyncTaskResult(AsyncTask task, Data... data) {
mTask = task;
mData = data;
}
}
AsyncTaskResult就是一个简单的携带参数的对象。
看到这,我相信大家肯定会想到,在某处肯定存在一个sHandler,且复写了其handleMessage方法等待消息的传入,以及消息的处理。
private static class InternalHandler extends Handler {
public InternalHandler() {
super(Looper.getMainLooper());
}
@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
@Override
public void handleMessage(Message msg) {
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE_POST_PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}
哈哈,出现了我们的handleMessage,可以看到,在接收到MESSAGE_POST_RESULT消息时,执行了result.mTask.finish(result.mData[0]);其实就是我们的AsyncTask.this.finish(result),于是看finish方法
private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}
可以看到,如果我们调用了cancel()则执行onCancelled回调;正常执行的情况下调用我们的onPostExecute(result);主要这里的调用是在handler的handleMessage中,所以是在UI线程中。
最后将状态置为FINISHED。
mWoker看完了,应该到我们的mFuture了,依然实在构造方法中完成mFuture的初始化,将mWorker作为参数,复写了其done方法。
/**
* Creates a new asynchronous task. This constructor must be invoked on the UI thread.
*/
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
Result result = doInBackground(mParams);
Binder.flushPendingCommands();
return postResult(result);
}
};
//任务执行结束会调用:postResultIfNotInvoked(get());
//get()表示获取mWorker的call的返回值,即Result.然后看postResultIfNotInvoked方法
mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
postResultIfNotInvoked(get());
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occurred while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
}
}
};
}
private void postResultIfNotInvoked(Result result) {
final boolean wasTaskInvoked = mTaskInvoked.get();
if (!wasTaskInvoked) {
postResult(result);
}
}
如果mTaskInvoked不为true,则执行postResult;但是在mWorker初始化时就已经将mTaskInvoked为true,所以一般这个postResult执行不到。
好了,到了这里,已经介绍完了execute方法中出现了mWorker和mFurture,不过这里一直是初始化这两个对象的代码,并没有真正的执行。下面我们看真正调用执行的地方。
execute方法中的:
还记得上面的execute中的:exec.execute(mFuture)
exec为executeOnExecutor(sDefaultExecutor, params)中的sDefaultExecutor
下面看这个sDefaultExecutor
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;
public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}
可以看到sDefaultExecutor其实为SerialExecutor的一个实例,其内部维持一个任务队列;直接看其execute(Runnable runnable)方法,将runnable放入mTasks队尾;
17-18行:判断当前mActive是否为空,为空则调用scheduleNext方法
22行:scheduleNext,则直接取出任务队列中的队首任务,如果不为null则传入THREAD_POOL_EXECUTOR进行执行。
下面看THREAD_POOL_EXECUTOR为何方神圣:
private static final int CORE_POOL_SIZE = CPU_COUNT + 1;
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
private static final int KEEP_ALIVE = 1;
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);
public static final Executor THREAD_POOL_EXECUTOR
= new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);
看到这里,大家可能会认为,背后原来有一个线程池,且最大支持128的线程并发,加上长度为10的阻塞队列,可能会觉得就是在快速调用138个以内的AsyncTask子类的execute方法不会出现问题,而大于138则会抛出异常。
其实不是这样的,我们再仔细看一下代码,回顾一下sDefaultExecutor,真正在execute()中调用的为sDefaultExecutor.execute,可以看到,如果此时有10个任务同时调用execute(synchronized)方法,第一个任务入队,然后在mActive = mTasks.poll()) != null被取出,并且赋值给mActivte,然后交给线程池去执行。然后第二个任务入队,但是此时mActive并不为null,并不会执行scheduleNext();所以如果第一个任务比较慢,10个任务都会进入队列等待;真正执行下一个任务的时机是,线程池执行完成第一个任务以后,调用Runnable中的finally代码块中的scheduleNext,所以虽然内部有一个线程池,其实调用的过程还是线性的。一个接着一个的执行,相当于单线程。