想让状态更新恢复引用透明的关键是让状态更新是显示的。不要以副作用方式更新状态,而是连同生成值一起返回一个新的状态。
纯函数式随机数生成器:
trait RNG {
def nextInt: (Int, RNG)
}
case class SimpleRNG(seed: Long) extends RNG {
override def nextInt: (Int, RNG) = {
val newSeed = (seed * 0x5DEECE66DL + 0xBL) & 0xFFFFFFFFFFFFL
val newRNG = SimpleRNG(newSeed)
val n = (newSeed >>> 16).toInt
(n, newRNG)
}
}
练习 6.1
写一个函数使用RNG.nextInt生成0和Int.MaxValue之间(含)的随机数。
def nonNegativeInt(rng: RNG): (Int, RNG) = {
val (v, rng1) = rng.nextInt
if (v == Int.MaxValue) (0, rng1)
else (Math.abs(v), rng1)
}
练习 6.2
写一个函数生成0到1之间的Double数。
def double(rng: RNG): (Double, RNG) = {
val (i, rng1) = nonNegativeInt(rng)
if (i == Int.MaxValue) (0.0, rng1)
else (i.toDouble / Int.MaxValue, rng1)
}
练习 6.3
写一个函数生成一个(Int, Double)对,一个(Double, Int)对和一个(Double, Double, Double)三元组。
def intDouble(rng: RNG): ((Int, Double), RNG) = {
val (i1, rng1) = rng.nextInt
val (i2, rng2) = rng1.nextInt
((i1, i2.toDouble), rng2)
}
def doubleInt(rng: RNG): ((Double, Int), RNG) = {
val ((i, d), rng1) = intDouble(rng)
((d, i), rng1)
}
def double3(rng: RNG): ((Double, Double, Double), RNG) = {
val ((_, d1), rng1) = intDouble(rng)
val ((_, d2), rng2) = intDouble(rng1)
val ((_, d3), rng3) = intDouble(rng2)
((d1, d2, d3), rng3)
}
练习 6.4
写一个函数生成一组随机数。
def ints(count: Int)(rng: RNG): (List[Int], RNG) = {
def loop(count: Int, res: (List[Int], RNG)): (List[Int], RNG) = count match {
case 0 => res
case _ =>
val (li, rng) = res
val (i, rng1) = rng.nextInt
loop(count - 1, (i :: li, rng1))
}
loop(count, (Nil, rng))
}
状态行为更好的API
回顾我们上述练习的实现,会注意到一个通用的模式:我们每个函数都有一个形式为RNG => (A, RNG)的类型。这种类型的函数被称为状态行为(state action)或状态转移。状态行为可以通过组合子来组合,组合子是一个高阶函数。既然需要一只乏味地重复传递状态参数,何不用组合子帮我们在行为之间自动传递。为了便于学习讨论,我们对RNG状态行为数据类型定义一个类型别名:
type Rand[+A] = RNG => (A, RNG)
val int: Rand[Int] = _.nextInt
def unit[A](a: A): Rand[A] =
rng => (a, rng)
def map[A, B](s: Rand[A])(f: A => B): Rand[B] =
rng => {
val (a, rng1) = s(rng)
(f(a), rng1)
}
def nonNegativeEven: Rand[Int] =
map(nonNegativeInt)(i => i - i % 2)
练习 6.5
使用map以更为优雅的方式重新实现double函数,参见练习6.2。
def double1(rng: RNG): (Double, RNG) =
map(nonNegativeInt){i =>
if (i == Int.MaxValue) 0.0 else i.toDouble / Int.MaxValue
}(rng)
组合状态行为
练习 6.6
按照下面的函数签名写一个map2函数。这个函数接受两个行为,ra和rb,以及一个函数f用于组合它们的结果,并返回一个组合了两者的新行为。
def map2[A, B, C](ra: Rand[A], rb: Rand[B])(f: (A, B) => C): Rand[C] =
rng => {
val (a, rng1) = ra(rng)
val (b, rng2) = rb(rng1)
(f(a, b), rng2)
}
练习 利用map2组合子重新实现intDouble和doubleInt函数
def both[A, B](ra: Rand[A], rb: Rand[B]): Rand[(A, B)] =
map2(ra, rb)((_, _))
val int: Rand[Int] = _.nextInt
val doubles: Rand[Double] =
rng => {
val (i, rng1) = rng.nextInt
(i.toDouble, rng1)
}
def intDouble1(rng: RNG): ((Int, Double), RNG) =
both(int, doubles)(rng)
def doubleInt1(rng: RNG): ((Double, Int), RNG) =
both(doubles, int)(rng)
练习 6.7
如果你能组合两个RNG转换行为,那么同样也可以组合一个行为列表。实现sequence函数将一个转换行为列表组合成一个转换行为。使用它实现之前写过的ints函数。
def sequence[A](fs: List[Rand[A]]): Rand[List[A]] =
rng => {
def loop(n: Int, res: (List[A], RNG)): (List[A], RNG) = n match {
case m if m < 0 => res
case _ =>
val (li, rng) = res
val (a, rng2) = fs(n)(rng)
loop(n - 1, (a :: li, rng))
}
loop(fs.length - 1, (Nil, rng))
}
def ints1(count: Int)(rng: RNG): (List[Int], RNG) =
sequence(List.fill(count)(int))(rng)
嵌套状态行为
map和map2组合子允许我们以特别简洁优雅的方式实现,其它实现方式则显得乏味且容易产生错误,但是所有的函数都可以使用map和map2组合子实现,有时候我们需要连续传递RNG,这时最好的方式使用一个新的组合子帮我们传递,所以我们需要一个更强大的组合子flatMap。
练习 6.8
实现flatMap然后用它实现nonNegativeLessThan。
def flatMap[A, B](ra: Rand[A])(f: A => Rand[B]): Rand[B] =
rng => {
val (a, rng1) = ra(rng1)
f(a)(rng1)
}
练习 6.9
根据flatMap重新实现map, map2。这也是flatMap比map和map2更强大的地方。
def map1[A, B](ra: Rand[A])(f: A => B): Rand[B] =
flatMap(ra)(a => unit(f(a)))
def map2[A, B, C](ra: Rand[A], rb: Rand[B])(f: (A, B) => C): Rand[C] =
flatMap(ra){a =>
map(rb){b =>
f(a, b)
}
}