腾讯Java二面:volatile原理分析,你能答出来吗

介绍

使用 volatile 修饰的变量是线程共享的全局变量,是轻量级锁的一种表现形式,因为不需要线程上线文切换和调度这些操作,效率杠杠的,但是不能保证原子性,并发场景下要小心使用,比如:多个线程同时执行 i++ 是有问题的。

volatile 的 Demo 代码:

/**
 * 单例模式(懒汉式)
 * @date:2020 年 7 月 14 日 上午 9:48:24
 */
public class Singleton {
    public static volatile Singleton instance = null;
    private Singleton() {
    }
    public static Singleton getInstance() {
        if (instance == null) {     //代码 1
            synchronized (instance) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

Singleton 对象是使用 volatile 修饰,所有线程都可见此对象,即有可能被多个线程同时访问此对象,比如有 A 和 B 两条线程同时进入代码 1,如果 B 线程获取锁进行对象初始化,A 线程自旋等待拿锁,B 线程完成初始化对象后释放锁,然后 A 线程获取锁后判断对象是否为 null,为了避免再次初始化对象节约了系统开销,所以此处必须使用双重校验 null。

特性及原理

可见性

任意一个线程修改了 volatile 修饰的变量,其他线程可以马上识别到最新值。实现可见性的原理如下。

步骤 1:修改本地内存,强制刷回主内存。

[

步骤 2:强制让其他线程的工作内存失效过期。

步骤 3:其他线程重新从主内存加载最新值。

单个读/写具有原子性

单个 volatile 变量的读/写(比如 vl=l)具有原子性,复合操作(比如 i++)不具有原子性,Demo 代码如下:

public class VolatileFeaturesA {
    private volatile long vol = 0L;

    /**
     * 单个读具有原子性
     * @date:2020 年 7 月 14 日 下午 5:02:38
     */
    public long get() {
        return vol;
    }

    /**
     * 单个写具有原子性
     * @date:2020 年 7 月 14 日 下午 5:01:49
     */
    public void set(long l) {
        vol = l;
    }

    /**
     * 复合(多个)读和写不具有原子性
     * @date:2020 年 7 月 14 日 下午 5:02:24
     */
    public void getAndAdd() {
        vol++;
    }

}

互斥性

同一时刻只允许一个线程操作 volatile 变量,volatile 修饰的变量在不加锁的场景下也能实现有锁的效果,类似于互斥锁。上面的 VolatileFeaturesA.java 和下面的 VolatileFeaturesB.java 两个类实现的功能是一样的(除了 getAndAdd 方法)。

public class VolatileFeaturesB {
    long vol = 0L;

    /**
     * 普通写操作
     * @date:2020 年 7 月 14 日 下午 8:18:34
     * @param l
     */
    public synchronized void set(long l) {  
        vol = l;
    }

    /**
     * 加 1 操作
     * @author songjinzhou
     * @date:2020 年 7 月 14 日 下午 8:28:25
     */
    public void getAndAdd() {
        long temp = get();
        temp += 1L;
        set(temp);
    }

    /**
     * 普通读操作
     * @date:2020 年 7 月 14 日 下午 8:33:00
     * @return
     */
    public synchronized long get() {
        return vol;
    }
}

部分有序性

JVM 是使用内存屏障来禁止指令重排,从而达到部分有序性效果,看看下面的 Demo 代码分析自然明白为什么只是部分有序:

//a、b 是普通变量,flag 是 volatile 变量
int a = 1;            //代码 1
int b = 2;            //代码 2
boolean flag = true;  //代码 3
int a = 3;            //代码 4
int b = 4;            //代码 5

PS:因为 flag 变量是使用 volatile 修饰,则在进行指令重排序时,不会把代码 3 放到代码 1 和代码 2 前面,也不会把代码 3 放到代码 4 或者代码 5 后面。但是指令重排时代码 1 和代码 2 顺序、代码 4 和代码 5 的顺序不在禁止重排范围内,比如:代码 2 可能会被移到代码 1 之前。

内存屏障类型分为四类。

1. LoadLoadBarriers

指令示例:LoadA —> Loadload —> LoadB

此屏障可以保证 LoadB 和后续读指令都可以读到 LoadA 指令加载的数据,即读操作 LoadA 肯定比 LoadB 先执行。

2. StoreStoreBarriers

指令示例:StoreA —> StoreStore —> StoreB

此屏障可以保证 StoreB 和后续写指令可以操作 StoreA 指令执行后的数据,即写操作 StoreA 肯定比 StoreB 先执行。

3. LoadStoreBarriers

指令示例: LoadA —> LoadStore —> StoreB

此屏障可以保证 StoreB 和后续写指令可以读到 LoadA 指令加载的数据,即读操作 LoadA 肯定比写操作 StoreB 先执行。

4. StoreLoadBarriers

指令示例:StoreA —> StoreLoad —> LoadB

此屏障可以保证 LoadB 和后续读指令都可以读到 StoreA 指令执行后的数据,即写操作 StoreA 肯定比读操作 LoadB 先执行。

实现有序性的原理:

如果属性使用了 volatile 修饰,在编译的时候会在该属性的前或后插入上面介绍的 4 类内存屏障来禁止指令重排,比如:

  • 在 volatile 写操作的前面插入 StoreStoreBarriers 保证 volatile 写操作之前的普通读写操作执行完毕后再执行 volatile 写操作。
  • 在 volatile 写操作的后面插入 StoreLoadBarriers 保证 volatile 写操作后的数据刷新到主内存,保证之后的 volatile 读写操作能使用最新数据(主内存)。
  • 在 volatile 读操作的后面插入 LoadLoadBarriers 和 LoadStoreBarriers 保证 volatile 读写操作之后的普通读写操作先把线程本地的变量置为无效,再把主内存的共享变量更新到本地内存,之后都使用本地内存变量。

volatile 读操作内存屏障:

volatile 写操作内存屏障:

3.使用场景

状态标志,比如布尔类型状态标志,作为完成某个重要事件的标识,此标识不能依赖其他任何变量,Demo 代码如下:

public class Flag {
    //任务是否完成标志,true:已完成,false:未完成
    volatile boolean finishFlag;

    public void finish() {
        finishFlag = true;
    }

    public void doTask() { 
        while (!finishFlag) { 
            //keep do task
        }
    }
}

一次性安全发布,比如:著名的 double-checked-locking,demo 代码上面已贴出。

开销较低的读,比如:计算器,Demo 代码如下。

/**
 * 计数器
 */
public class Counter {
    private volatile int value;
    //读操作无需加锁,减少同步开销提交性能,使用 volatile 修饰保证读操作的可见性,每次都可以读到最新值 
    public int getValue() {
        return value; 
    }
    //写操作使用 synchronized 加锁,保证原子性
    public synchronized int increment() {
        return value++;
    }
}

最后

觉得不错的小伙伴记得转发关注哦,后续会持续更新精选技术文章!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容